RISK ASSESSMENT OF PRIMARY PACKAGING MATERIALS FOR FOOD AND BEVERAGES WITH SPECIAL REFERENCE TO PLASTICS

Dr. S N Sabapathi
Defence Food Research Laboratory
Mysore – 570 011
Food Contact Materials / Substances

- Food manufacturing equipment
 - Belts, gaskets, lubricants, etc.

- Food packaging
 - Paper, plastic, carton board, glass, etc.

- Food preparation wares
 - Crockery and utensils (e.g. chopping boards, whisks)
 - Gloves, apron, etc.

- Dining wares
 - Cutlery
 - Bowl, plate, etc.
Use of Plastics as Packaging

- Convenient
- Extend shelf life of foods
- Low cost
- Flexible
- Light weight
- Versatile in barrier properties
- Less materials by weight are needed compared to other materials such as glass or metal

How Packaging Materials Affect Food Safety?

- Migration of residual chemicals
- Insufficient barrier properties
- Packaging failure
- Loss of seal integrity
Issues in Usage of Plastic for Food Package

- Leaching of unreacted monomers and monomers that are produced when polymers break down due to adverse conditions into food from the food packaging materials.

- Some monomers are proven to be carcinogenic and toxic to humans.

List of Monomers from Plastic Packaging

- Styrene
- Vinyl Chloride
- Bisphenol A Diglycidyl Ether
- Isocyanate
- Caprolactam
- Polyethylene Terephthalate Oligomer
Migration

• Migration involves the mass transfer from an external source into food by sub microscopic processes impacting food safety and quality

• Migration can occur by

 ➢ **Diffusion**
 – Classified as direct contact migration as it’s physicochemical dependant
 – Packaging components penetrate and diffuse across packaging material layers due to chemical interactions

 ➢ **Gas phase**
 – Indirect contact migration where molecules travel through gas phase
 – Volatile components can migrate or “jump” from material into foods

 ➢ **Set off**
 – Migration due to set off of components during manufacture or storage
Migration process
Major steps in migration process

Diffusion of chemical compounds through the polymers
Depend on concentration of substances in packaging film and food, nature of the foods, temperature, and the time period over which duration of contact occurs

Desorption of the diffused molecules from the polymer surface

Sorption of the compounds at the plastic–food interface

Desorption of the compounds in the food
Stages of Migration of Monomers

- Diffusion of monomers within the polymer due to Brownian movement
- Solvation of the monomer at the polymer-food interface
- Dispersion into bulk food
Diffusion by Random Brownian Movement

Plastic

Polymer

Monomer
Solvation of the Monomer at the Polymer-Food Interface

- Occurs when migrants are more soluble in the food compared to the polymer
- More serious in fatty foods due compared to aqueous foods
Dispersion into Bulk Food

- Migrants diffuse away from polymer-food interface

- Occur due to the mixing of the food matrix, drawing the monomers from the interface to the center of the food, facilitating more monomers to dissolve into the food at the interface
Factor Affecting Rate and Extent of Migration in Packaged Food

- Concentration and properties of migrant in the packaging materials
- Concentration and properties of migrant in the printing ink
- Properties of polymer used to produce the food packaging materials
- Maximum solvent absorption in the polymer
- Storage period
- Storage temperature
- Contact area
- Fat content in the food
- Adhesives used to seal packaging
Major Sources of Residual Chemicals

<table>
<thead>
<tr>
<th>ADDITIVES</th>
<th>RESIDUAL SOLVENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Anti-oxidants</td>
<td>- Solvent based adhesives and inks</td>
</tr>
<tr>
<td>- Surface Modification Additives</td>
<td>- Solvent removal process is critical</td>
</tr>
<tr>
<td>- Other additives</td>
<td></td>
</tr>
</tbody>
</table>
Food Contact Material (FCM) Application of Chemicals

<table>
<thead>
<tr>
<th>Chemical</th>
<th>FCM application*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylene oxide</td>
<td>Monomer for plastics (e.g. polyethylene oxide, polyethylene terephthalate)</td>
</tr>
<tr>
<td></td>
<td>Monomer for printing inks and rubber</td>
</tr>
<tr>
<td></td>
<td>Defoamer in paper and board</td>
</tr>
<tr>
<td>Bisphenol A</td>
<td>Monomer for plastics (polycarbonate)</td>
</tr>
<tr>
<td></td>
<td>Monomer for resins (e.g. epoxy, phenolic, ethoxylene and ion exchange)</td>
</tr>
<tr>
<td></td>
<td>Monomer and additive for printing inks</td>
</tr>
<tr>
<td>Dibutyl phthalate (DBP)</td>
<td>Additive in plastics (plasticiser in, for example, polyvinyl chloride, polymethyl metacrylate, polyvinyl acetate and cellulose esters)</td>
</tr>
<tr>
<td></td>
<td>Additive/plasticiser in paper and board, printing inks, adhesives, slimicides and cellophane</td>
</tr>
<tr>
<td>Benzylbutyl phthalate (BBP)</td>
<td>Additive in plastics (plasticiser in, for example, polyvinyl chloride, polycrylates, polyvinyl acetate and nitrocellulose)</td>
</tr>
<tr>
<td></td>
<td>Additive/plasticiser in paper and board, printing inks, acrylic coatings, adhesives and rubber</td>
</tr>
<tr>
<td>Propylparaben</td>
<td>Additive in plastics and printing inks</td>
</tr>
<tr>
<td>4-tert-Butylphenol</td>
<td>Monomer for plastics</td>
</tr>
<tr>
<td></td>
<td>Plasticiser for cellulose acetate</td>
</tr>
<tr>
<td></td>
<td>Adjuvant for polycarbonate</td>
</tr>
<tr>
<td></td>
<td>Synthetic rubber manufacture</td>
</tr>
<tr>
<td></td>
<td>Printing inks</td>
</tr>
<tr>
<td>Styrene</td>
<td>Monomer for different materials (e.g. styrene–butadiene rubber, acrylonitrile–butadiene–styrene polymer, styrene–acrylonitrile copolymer resin, printing inks)</td>
</tr>
<tr>
<td></td>
<td>Cross-linking agent</td>
</tr>
<tr>
<td></td>
<td>Solvent</td>
</tr>
<tr>
<td>1-Chloro-2,3-epoxypropane</td>
<td>Monomer for different materials (e.g. epoxy resins, elastomers, plasticisers, stabilisers, printing inks)</td>
</tr>
<tr>
<td>1,3-Dihydroxy-benzene</td>
<td>Monomer for plastics</td>
</tr>
<tr>
<td></td>
<td>Plasticiser, stabiliser, rubber production, resins</td>
</tr>
<tr>
<td></td>
<td>Flavouring agent</td>
</tr>
</tbody>
</table>
International Migration Alerts

- **Isopropylthioxanthone (ITX):**
 - 2005: Ink curing agent detected in cardboard packaged milk

- **Epoxydised soy bean oil (ESBO):**
 - 2005: Swiss survey of jarred foods identified concentrations exceeding the TDI allowance

- **Diethylhexyl phthalate (DEHP):**
 - 2011: Clouding agent in probiotics substituted by probable carcinogenic compound in order to cut costs

- **Primary aromatic amines (PAAs):**
 - 2007: Poorly manufactured polyamide utensils leach carcinogenic amines

Bisphenol A (BPA):
- Recent concern involving infant feeding bottles
Plasticizers in Bottled Water

- **Causes:**
 - Water contamination in the bottling plant
 - Indirect contamination during analytical procedures due to the wide use of plasticizers.
 - Migration of plasticizers from the bottle material to the water

- **Migration of plasticizers**
 - Increases under specific conditions / parameters
 - Need to avoid these conditions
 - Minimization of chemicals leaching into bottled water
Additives in Plastic Bottles

- **Plasticizers**
 - Offer broad functionality to polymers
- **Coloring agents**
 - Not chemically bound to the polymer chains
 - Can migrate within the material and leach into water
- **Heat stabilizers**
 - More prone to dissolve in the aqueous environment
Potential Migrants

Additives provide properties or effects in addition to stabilization which are additional sources of potential Extractables and Leachables.
Bisphenol A (BPA)

- From plastic bottles and some cans lined with polycarbonate - tiny amounts
- Formed when polycarbonate bottles are washed with harsh detergents or bleach (eg, sodium hypochlorite)
- At high levels of exposure, bisphenol A is potentially hazardous because it mimics the female hormone estrogen

Diethylhexyl adipate (DEHA)

- From commercial cling films made from PVC
- Food-compatible phthalate plasticizer and tiny amounts may migrate into fatty food (such as meat or cheese), especially with heating
Endocrine-disrupting chemicals (EDCs)

- Substances which interfere with the synthesis, secretion, transport, binding, action or elimination of natural hormones in the body
- Can affect development, behaviour, fertility and homeostasis (normal cell metabolism)
- BPA, phthalates, alkylphenols etc.
International Regulations

- European Union
- United States
 - Code of Federal Regulation Chapter 21
 - Component specific approach
- Japan
 - Framework based on Food Sanitation Act, 1947
- China
 - Food Safety Law, 2009
- South America
 - MERCOSUR Resolution GMC 3/92
- Australia (New Zealand and Australia)
 - Limited regulations in place; refer to EU and FDA for regulatory guidance
Regulations to Limit Contamination of Food by Monomers

Commission of European Communities (Europe)
- Over all migration limit is set to 60 mg/kg
- Some free monomers have specific limits

Food and Drugs Administration (United States)
- Encompasses both basic resins used in food packaging and adjuvants used in the final food packaging
Migration Testing

- **Migration modelling software**
 - Diffusion theory and partitioning effects
 - Free and commercial software's available
 - Models provide overestimation of migration

- **Migration into food simulants**
 - Mimic food types
 - Foreseeable worst case scenario
 - Minimise matrix effects

- **Migration into foods**
 - Migration under real conditions
 - Various sample cleanup required
Challenges associated with FCMs

- Complex formulation of materials
 - Food packaging: monolayer/multilayer
 - Use of recycled materials
- Consider food type to be packaged in final product or intended purpose
- Set-off migration
 - Incomplete curing resulting in transfer into foods
 - ITX case
- Non intentionally added substances
 - Impurities within raw materials
 - Polymer, additive degradation or reaction products
 - Contaminants
Factors Affecting Chemical Leaching

- Temperature
- Prolonged storage
- Frequency of reuse
- Polymer age
- Carbon dioxide
- UV-exposure
- Bottle volume
- Bottle material
Basic Guidelines for Minimization of Chemical Leaching

- Storage and transportation of bottled water
 - Under room temperature conditions (20-22°C)
 - Without sunlight exposure

- Minimization of:
 - Prolonged storage of bottled water
 - Reusing plastic bottles
 - Filling hot water/tap water into plastic bottles
Steps in Risk Assessment

1. WHAT?
 - Polymer analysis & characterization
 - Identification of the Additives used
 - Identification of unknown substances/impurities

2. HOW MUCH?
 - Organic Trace Impurities. (up to ppb levels)
 - Additives in Plastics
 - Residual Solvents, Odour Components
 - Stability Testing
 - Extractable & Leachable Studies

3. WHY?
 - Failure Analysis
 - Complaint Investigations
 - Determine the role of each additive in polymer formulations
 - Make recommendations for alternative stabilizers for greater
 - Compatibility with the package to achieve lower leachability
What are the types of potential risks to food safety?

- Biological - bacteria, viruses, parasites
- Physical - hair, metal shavings, glass; anything that can cause physical harm or discomfort
- Chemical - Cleaners, lubricants, paints, pesticides
- Allergenic - Peanuts, tree nuts, fish, shellfish, milk, soy, eggs, wheat
Potential Food Safety Risks & Possible Controls for Food Packaging Materials

<table>
<thead>
<tr>
<th>Potential Issue (Food Safety Implications)</th>
<th>Possible Controls (This list is not all inclusive, alternative controls are possible)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL PRINTED PACKAGING MATERIALS</td>
<td></td>
</tr>
<tr>
<td>The following issues and controls may be applicable to most printed materials (labels, cartons, rigid plastic containers, lids, film, pouches, sleeves, …)</td>
<td></td>
</tr>
</tbody>
</table>
| Printing error—allergen ingredient left off of ingredient line (potential for unlabelled allergen after food is packaged) | Controls at customer providing print proof copy to assure proof copy and file to make plates is accurate
 Controls at printing press to assure print from the line matches proof copy |
| Wrong printing plates used (potential for unlabelled allergen after food is packaged) | Controls to archive or destroy old plates and old print files
 Controls in place at press to verify that print matches proof copy that is scheduled |
| Rework process allowed for materials to be mixed (potential for unlabelled allergen after food is packaged) | Strict controls for rework procedures (only 1 material reworked at a time or no rework allowed)
 Controls to identify/label rework correctly
 Work procedures for in-process rework that assure that rework was used during the same production run if possible (vs. being set aside which allows potential to rework into the next run by mistake) |
| Returned goods mixed with non-like materials (potential for unlabelled allergen after food is packaged) | Strict controls for identification and storage of returned goods. Strict rework controls utilized if material is to be reworked. |
| Incorrect label applied to identify finished goods (units, cases, rolls, and pallets) (potential for unlabelled allergen after food is packaged) | Controls for pre-printing case labels, core tags (rolls), and pallet labels.
 Account for all labels printed, destroy or segregate any left-over printed unit labels
 Vision systems to verify that case label matches material within the case and matches the pallet label |
| Mixed materials within a case or on a pallet due to inadequate/incomplete line clearance procedures (cases, rolls, etc.) (potential for unlabelled allergen after food is packaged) | Strict line clearance/changeover procedures throughout the process including all equipment areas, partial cases, partial pallets, cases on conveyors, quality check samples, rework, etc.
 A detailed checklist must be used and a second verification utilized to assure that no materials from the previous run are inadvertently left on the line |
| Mixed materials on a pallet—manual or automatic palletizing (potential for unlabelled allergen after food is packaged) | Bar code scanners and sorting devices to separate cases on a common conveyor to divert to the correct palletizing area
 Color coded case labels to assist in correct palletizing for manual palletizing operations
 Full pallet scanners to scan the exterior labels on a pallet to assure all are correct |
<table>
<thead>
<tr>
<th>Potential Issue (Food Safety Implications)</th>
<th>Possible Controls (This list is not all inclusive, alternative controls are possible)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL PRINTED PACKAGING MATERIALS</td>
<td></td>
</tr>
<tr>
<td>HUMAN ERROR— Note that human error is</td>
<td>• Adequate training of employees, management commitment to food safety, and</td>
</tr>
<tr>
<td>one of the main causes of many of the</td>
<td>reinforcement are essential to prevent potential for food safety issues</td>
</tr>
<tr>
<td>mixed material issues</td>
<td>• Documented work procedures, employee accountability</td>
</tr>
<tr>
<td></td>
<td>• Implementation of multiple systems may be required to adequately control the</td>
</tr>
<tr>
<td></td>
<td>risk in some processes (vision systems are good if applicable to the process)</td>
</tr>
<tr>
<td></td>
<td>• Some packaging manufacturers have found that positive reinforcement for</td>
</tr>
<tr>
<td></td>
<td>employees identifying potential issues or preventing or reducing issues at the</td>
</tr>
<tr>
<td></td>
<td>customers to be successful</td>
</tr>
<tr>
<td>Inks not approved for specific use</td>
<td>• Regulatory (FDA) approval letters for specific use (food contact, incidental</td>
</tr>
<tr>
<td>(*potential chemical or odor migration</td>
<td>contact, non-food contact)</td>
</tr>
<tr>
<td>into food*)</td>
<td></td>
</tr>
<tr>
<td>Inks containing potentially allergenic</td>
<td>• Inks containing potential allergenic materials must be coated with an</td>
</tr>
<tr>
<td>materials (e.g., soy-based) (potential</td>
<td>appropriate coating to prevent exposure of the allergen (for product contact</td>
</tr>
<tr>
<td>for allergen contact to food after</td>
<td>surfaces)</td>
</tr>
<tr>
<td>packaging if material is printed on food</td>
<td></td>
</tr>
<tr>
<td>contact material)</td>
<td></td>
</tr>
<tr>
<td>Coating layer over printing not adequate</td>
<td>• Controls in place to assure coating layer over print is adequate and correct</td>
</tr>
<tr>
<td>or not suitable for use for food</td>
<td>coatings (GRAS or FDA approved) are used for specific application</td>
</tr>
<tr>
<td>packaging (potential chemical or odor</td>
<td></td>
</tr>
<tr>
<td>migration into food—of particular concern if ink is touching product contact</td>
<td></td>
</tr>
<tr>
<td>surface of packaging, e.g., nested</td>
<td></td>
</tr>
<tr>
<td>printed rigid plastic cups, rolls of</td>
<td></td>
</tr>
<tr>
<td>film, stacks of flat cartons, etc.)</td>
<td></td>
</tr>
</tbody>
</table>
Potential Food Safety Risks & Possible Controls for Food Packaging Materials

<table>
<thead>
<tr>
<th>Potential Issue (Food Safety Implications)</th>
<th>Possible Controls (This list is not all inclusive, alternative controls are possible)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUT AND STACK LABELS</td>
<td></td>
</tr>
</tbody>
</table>
| Cut and Stack Labels are printed on large sheets and could be printed on sheet-fed or roll-fed printing presses. Printing more than 1 SKU on a sheet is discouraged (or may not be allowed by the customer), however, with some products may not be able to be avoided. After printing the sheets, the stacks of sheets are typically cut into rows and then rows are die-cut into desired shape of labels. The stacks of labels may be shrink wrapped and ultimately placed into cases and palletized. | • Prohibit combo printing (multiple SKUs on each sheet)—design layout with only 1 SKU printed on a sheet at a time.
 • Design print layout so that print faces with like allergens or duplicate faces are side by side.
 • Design print layout so that print faces have different die cut shapes that are side by side (so if they were mixed it would be obvious that it was the wrong label when applied to the finished food package).
 • Print tick marks on labels to differentiate between SKUs (utilize different colors, location on labels, size and appearance of mark (e.g., single vs. double line)
 • Train operators to watch for and correct issues if sheets move after sitting and slide onto the adjacent row.
 • Train operators at die cut operation to check dies between SKUs to make sure that labels are not stuck in die (and could cause next stack to have the wrong label on top). |
| Mixed labels within a stack or a mislabeled stack due to the top label being incorrect (potential for unlabeled allergen after food is packaged) | |
| Mixed stacks of labels within a case (potential for unlabeled allergen after food is packaged) | • Train operators to be diligent when sorting and packing stacks into cases
 • Utilize vision systems to sort stacks
 • Utilize vision systems to read the top labels of stacks in a case and compare to case label to assure all stacks within a case are the same and match the case label (scanners can not be utilized to check all labels within a stack as labels are not handled individually)
 • Assure reject or alarm mechanism for mixed cases is working properly and can not be by-passed by human error (putting a case back on the line that was rejected without checking it).
 • Complete material inventory reconciliation (if all materials are accounted for inventory reconciliation could identify if labels were mixed due to one SKU being short and another with excess when comparing material printed and final quantities) |
| Mixed materials or mixed cases on a pallet (potential for unlabeled allergen after food is packaged) | • Complete and thorough line clearance procedures to assure all material from the previous run is cleared from line—utilize a detailed checksheet and have a second person verify that line is cleared of all materials (2nd person visually check line not just the paperwork)
 • Removal of all partial cases and partial pallets
 • Removal of any Quality check samples remaining in the area
 • Removal of rework from the area (identify and store properly or destroy per procedures)
 • Removal of all cases or bundles on conveyors |
Potential Food Safety Risks & Possible Controls for Food Packaging Materials

<table>
<thead>
<tr>
<th>Potential Issue (Food Safety Implications)</th>
<th>Possible Controls (This list is not all inclusive, alternative controls are possible)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESSURE SENSITIVE LABELS</td>
<td></td>
</tr>
<tr>
<td>Pressure sensitive labels are typically printed on roll-stock through a printing press and excess material is cut out and pulled off with labels remaining on roll-stock. Rolls may go through re-winding/finishing process after printing process to verify print quality and make rolls with label quantities and sizes per customer specifications.</td>
<td></td>
</tr>
</tbody>
</table>
| Roll contains mixed labels due to splice (potential for unlabeled allergen after food is packaged) | • Strict controls for splice procedures to prevent inadvertent splicing of unlike materials
• Utilize vision system (e.g., bar code reader) at rewinder to assure all labels are alike on a roll |
| Roll contains mixed labels due to tail from previous run attached to new roll (typical process is to leave tail of material inside press rollers to prevent need to re-thread rollers at changeover) (potential for unlabeled allergen after food is packaged) | • Strict controls at printing press to assure tail of prior run printed material is not allowed to be attached to new roll for next run--
 • Run tail from previous run out onto floor and cut off when new material comes through, then attach new material to roll and proceed
• Alternatively material left inside press rollers without printing on it--
 • Raise printing rollers at press but still leave material inside threaded through rollers at the end of a run—this will result in blank material that could be run directly onto the new roll and cut off at rewinding (easier to identify blank material vs. printed material) |
Potential Food Safety Risks & Possible Controls for Food Packaging Materials

PRINTED PAPERBOARD CARTONS (Cut and Stack—Flat, and Glued)

Note: Paperboard cartons are typically considered secondary packaging but could be considered primary due to foreseeable use (e.g., cereal or crackers falling out of the inside liner and into carton itself). Also, some cartons are primary packaging and used without a liner (e.g., pasta, some cereals, rice, ...). Blank paperboard is typically made at a separate facility than the carton manufacturing facility (or may be purchased externally). Paperboard is printed by sheet-fed or roll-fed printing presses depending on the operation. Printed paperboard is then die cut to the desired carton shape per the customer specs. Flat cartons are shipped in stacks and are folded and glued by the customer. Glued cartons require a separate operation after die-cutting and are fed through equipment where the cartons are folded and the side seams glued prior to stacking/casing/palletizing and shipment to the customer.

<table>
<thead>
<tr>
<th>Potential Issue (Food Safety Implications)</th>
<th>Possible Controls (This list is not all inclusive, alternative controls are possible)</th>
</tr>
</thead>
</table>
| Mixed cartons within a stack or a mislabeled stack due to the top carton being incorrect (potential for unlabeled allergen after food is packaged) | - Prohibit combo printing (multiple SKUs on each sheet)—design layout with only 1 SKU printed on a sheet at a time
 * If combo printing must be used:
 - Design print layout so that print faces with like allergens or duplicate faces are side by side
 - Design print layout so that print faces have different die cut shapes that are side by side (so if they were mixed it would be obvious that it was the wrong label when applied to the finished food package)
 - Print collation or tick marks on cartons (typically on flaps) to differentiate between SKUs (utilize different colors, location on flaps, size and appearance of mark (e.g., single vs double line))
 - Train operators at die cut operation to check dies between SKUs to make sure labels are not stuck in die (and could cause next stack to have the wrong label on top) |
| Mixed cartons due to handling errors at casing or palletizing operation (potential for unlabeled allergen after food is packaged) | - Strict employee training and procedures to prevent mixing of cartons within a case or on a pallet
 - Utilize vision systems (e.g., bar code reader or collation mark reader) after carton gluing operation to assure cartons are not mixed (can only be used for glued cartons, flat cartons are not handled individually) |
| Ink used for interior carton printing (potential chemical or odor migration into food) | - Ink used for interior carton printing (e.g., coupons or special offers) must be approved for food contact or incidental food contact |
| Paperboard quality—potential for micro, chemical, or extraneous contaminants | - Recycle material utilized by specific type into appropriate board products
 - Biocide added to pulp slurry to prevent micro growth during process
 - Chemicals used in process are GRAS or approved for specific use
 - Foreign material removal systems to eliminate foreign material in recycle pulp
 - Metal detectors on finished board lines to detect metal |
Potential Food Safety Risks & Possible Controls for Food Packaging Materials

<table>
<thead>
<tr>
<th>Potential Issue (Food Safety Implications)</th>
<th>Possible Controls (This list is not all inclusive, alternative controls are possible)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINTED FILM</td>
<td></td>
</tr>
<tr>
<td>Film may be made with various processes and the finished printed film may be multiple layers of films extruded or laminated together to form a film with the desired properties for the customer. During this process the film may be handled multiple times including re-winding, printing, and various finishing processes to meet customer requirements and roll sizes.</td>
<td></td>
</tr>
</tbody>
</table>
| Roll contains mixed SKUs due to splicing unlike materials together at rewinding or finishing operation *(potential for unlabeled allergen after food is packaged)* | • Strict controls for splice procedures to prevent inadvertent splicing of unlike materials
• Utilize vision system (e.g., bar code reader) at rewinder to assure all SKUs are alike on a roll |
| Roll contains mixed SKUs due to tail from previous run attached to new roll (typical process is to leave tail of material inside press rollers to prevent need to re-thread rollers at changeover) *(potential for unlabeled allergen after food is packaged)* | • Strict controls at printing press to assure tail of prior run printed material is not allowed to be attached to new roll for next run--
 • Run tail from previous run out onto floor and cut off when new material comes through, then attach new material to roll and proceed
• Alternatively material left inside press rollers without printing on it--
 • Raise printing rollers at press but still leave material inside threaded through rollers at the end of a run—this will result in blank material that could be run directly onto the new roll and cut off at rewinding (easier to identify blank material vs. printed material) |
| Functional barrier or odor migration issues due to incorrect resin used *(barrier issues could lead to spoilage or micro issues, incorrect resin could cause odor or chemical issues)* | • Controls in place to assure only correct resins are used.
• Resins for film for food products must be approved by regulatory (FDA) for specific food use
• Controls in place to prevent non-food approved resins from mixing with resins to be used for food packaging film |
Potential Food Safety Risks & Possible Controls for Food Packaging Materials

<table>
<thead>
<tr>
<th>Potential Issue (Food Safety Implications)</th>
<th>Possible Controls (This list is not all inclusive, alternative controls are possible)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINTED FILM</td>
<td></td>
</tr>
</tbody>
</table>
| Film quality issues make functional barrier inadequate—package leakage (barrier issues could lead to spoilage or micro issues dependant on type of food product) | • Process parameters monitored at a frequency to assure material is produced per specification
• Quality check procedures verify film is within specifications
• Material that is out-of-spec is identified and segregated for disposition or rework |
| Potential for extraneous material, chemical, or microbiological contamination from raw materials, equipment, or environment | • Controls in place during manufacturing and finishing processes to prevent contamination from equipment or the environment (e.g., film not allowed to touch floor between rollers or other processes, building and equipment maintained so as not to be a source of contamination (e.g., no roof leaks), lubricants with potential for product contact food grade, lights in process area shielded, etc.)
• Rare earth magnets may be needed for bulk ingredients (unloading or later in process prior to melting resin pellets)
• Metal detection is not typically used for film, but may be used in some applications |
| Compressed air used on product contact surfaces (could post potential for micro or chemical contamination) | • Air used on product contact surfaces must be of acceptable micro quality (filtered) for the type of material being made (e.g., air used for film for dairy products needs filtration to prevent micro contamination)
• Compressors for food contact air must be oil-free or use food approved oil and filtered to remove oil prior to use |
<p>| Cooling Water used in contact with film (potential for micro or chemical contamination) | • Cooling water may be used for film in some specific applications—if recirculated it must be treated to prevent microbiological growth and tested at a designated frequency to verify potability. Alternatively single pass potable water could be used |
| Processing aids approved for specific use (potential chemical contamination if not approved for specific use) | • Process aid materials must be approved for incidental food contact if appropriate |</p>
<table>
<thead>
<tr>
<th>Potential Issue (Food Safety Implications)</th>
<th>Possible Controls (This list is not all inclusive, alternative controls are possible)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rigid Plastic Containers and Lids</td>
<td></td>
</tr>
<tr>
<td>Rigid plastic containers and lids are typically produced from injection molding (hot melted resin injected under pressure into a mold, then excess cut away) or from thermoforming (a sheet of plastic material is heated and pressed into the desired shape, cut out, etc.). Printing (decorating) typically occurs in a separate process following the molding/forming processes.</td>
<td></td>
</tr>
<tr>
<td>Potential for extraneous pieces of plastic inside containers (potential for physical hazard)</td>
<td>• Vacuums, air blows, or other removal/cleaning devices in place and functional in thermoform and molding processes to remove excess material after forming and cutting (as applicable for specific process)</td>
</tr>
<tr>
<td>Potential for metal contamination from materials, equipment, or process (potential for physical hazard)</td>
<td>• Typically screens are in the process to prevent extraneous from entering the equipment. Screens must be on a routine inspection schedule to prevent the screen from becoming a source of the contamination itself</td>
</tr>
<tr>
<td>Compressed air used on product contact surfaces (potential for micro or chemical contamination)</td>
<td>• Metal detection or x-ray may be needed based on the type of material, the process, and history of issues</td>
</tr>
<tr>
<td>Compressed air used on product contact surfaces (potential for micro or chemical contamination)</td>
<td>• Incoming bulk materials may need rare earth magnets at the unloading area or in the process prior to melting the resin pellets</td>
</tr>
<tr>
<td>Processing aids approved for specific use (potential chemical contamination if not approved for specific use)</td>
<td>• Air used on product contact surfaces must be of acceptable micro quality (filtered) for the type of container being made (e.g., cups for cold fill dairy products need filtration to prevent micro contamination)</td>
</tr>
<tr>
<td>Processing aids approved for specific use (potential chemical contamination if not approved for specific use)</td>
<td>• Compressors for food contact air must be oil-free or use food approved oil and filtered prior to use</td>
</tr>
<tr>
<td>Processing aids approved for specific use (potential chemical contamination if not approved for specific use)</td>
<td>• Mold release agents must be approved for incidental food contact if appropriate (e.g., cups will be nested after forming and outside of cup will touch inside of the next cup)</td>
</tr>
<tr>
<td>Plastic quality issues make functional barrier inadequate—package leakage (barrier issues could lead to spoilage or micro issues dependant on type of food product)</td>
<td>• Process parameters monitored at a frequency to assure material is produced per specification</td>
</tr>
<tr>
<td>Plastic quality issues make functional barrier inadequate—package leakage (barrier issues could lead to spoilage or micro issues dependant on type of food product)</td>
<td>• Quality check procedures verify containers and/or lids are within specifications</td>
</tr>
<tr>
<td>Functional barrier or odor migration issues due to incorrect resin used (barrier issues could lead to spoilage or micro issues, incorrect resin could cause odor or chemical issues)</td>
<td>• Material that is out-of-spec is identified and segregated for disposition or rework</td>
</tr>
<tr>
<td>Functional barrier or odor migration issues due to incorrect resin used (barrier issues could lead to spoilage or micro issues, incorrect resin could cause odor or chemical issues)</td>
<td>• Controls in place to assure only correct resins are used.</td>
</tr>
<tr>
<td>Functional barrier or odor migration issues due to incorrect resin used (barrier issues could lead to spoilage or micro issues, incorrect resin could cause odor or chemical issues)</td>
<td>• Resins for containers for food products must be approved by regulatory for specific food use.</td>
</tr>
<tr>
<td>Functional barrier or odor migration issues due to incorrect resin used (barrier issues could lead to spoilage or micro issues, incorrect resin could cause odor or chemical issues)</td>
<td>• Controls in place to prevent non-food approved resins from mixing with resins to be used for food packaging containers</td>
</tr>
</tbody>
</table>
Potential Food Safety Risks & Possible Controls for Food Packaging Materials

<table>
<thead>
<tr>
<th>Potential Issue (Food Safety Implications)</th>
<th>Possible Controls (This list is not all inclusive, alternative controls are possible)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass Jars and Containers</td>
<td></td>
</tr>
<tr>
<td>Glass container production involves a continuous process where molten glass is formed, typically in 2 stages, then cooled, inspected electronically, cased or bulk palletized, then shipped to the consumer. Defects that are culled out either by defective mold number or by inspection devices are reworked back into the process, as with recycle glass received as a raw component of the glass manufacturing process.</td>
<td></td>
</tr>
</tbody>
</table>
| Potential for extraneous pieces of glass in jars or containers due to breakage in manufacturing process *(potential risk of injury to consumer)* | Glass breakage prevention and controls:
- Line layout to minimize potential for contamination when breakage occurs—lines covered past cleaning devices (if present)
- Surface coatings adequately applied to minimize friction in container to container contact
- Electronic vision systems in place to detect: glass defects, extraneous glass in jars, seal defects, other...
- Vision systems must be set up with actual glass defects from jars/bottles being run
- Reject devices must be set-up to accurately reject the identified defective container
- Mold reader reject devices must be set up accurately to reject the specific mold number identified as defective
- Process parameters monitored to assure containers are made per specification
- Quality check programs in place and followed by operators |
| Glass defects made during manufacturing process *(potential risk of extraneous glass or injury, leakage due to seal surface not sealable, potential for breakage at food manufacturer or consumer level)* | Above controls applicable to this as well |
Potential Food Safety Risks & Possible Controls for Food Packaging Materials

<table>
<thead>
<tr>
<th>Potential Issue (Food Safety Implications)</th>
<th>Possible Controls (This list is not all inclusive, alternative controls are possible)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass Jars and Containers</td>
<td></td>
</tr>
<tr>
<td>Damage to glass during post-manufacture handling procedures</td>
<td>• Procedures must be in place to prevent damage at the palletizing and casing processes.</td>
</tr>
<tr>
<td>• Bulk palletizing procedures (e.g., forklift squeezes jars and cause potential damage)</td>
<td>• Periodic inspections of post-manufacture cases or bulk palletized glass to assure that damage has not occurred.</td>
</tr>
<tr>
<td>• Casing procedures (e.g., internal case dividers not inserted properly allowing jar finishes to touch during shipping allowing cracking and breaking of jars)</td>
<td>• Employees must be aware of potential hazards and prevention measures for glass containers post-manufacture</td>
</tr>
<tr>
<td>(potential risk of extraneous glass or injury at food manufacturer or consumer level)</td>
<td></td>
</tr>
<tr>
<td>Glass containers used for hot-fill products susceptible to breakage (potential risk of extraneous glass or injury at food manufacturer or consumer level)</td>
<td>• Glass containers to be used for hot-fill products must be tested for thermo-shock during manufacturing process to assure containers will withstand the process at the food manufacturer and consumer level</td>
</tr>
<tr>
<td>Coatings applied to glass prior to cooling and post-cooling are appropriate and approved for specific use (potential for chemical contamination if coating not approved for food contact or if hot end does not eliminate the coating)</td>
<td>• Hot end coatings are typically not an issue because they will be burned off in the Lehr—but need to be sure that the coating used is applicable (GRAS for this use)</td>
</tr>
<tr>
<td></td>
<td>• Cold end coatings must be approved for use for food contact containers (GRAS or other approval)</td>
</tr>
<tr>
<td>Compressed air used on product contact surfaces (potential for micro or chemical contamination)</td>
<td>• Air used on product contact surfaces must be of acceptable micro quality (filtered) for the type of container being made (e.g., jars for cold fill products need filtration to prevent micro contamination)</td>
</tr>
<tr>
<td></td>
<td>• Compressors for food contact air must be oil-free or use food approved oil and filtered prior to use</td>
</tr>
</tbody>
</table>
Thank YOU