Diabetes In India
“The Bitter Sweet Nightmare”

Ambrish Mithal
Non-communicable diseases cause 61% of deaths in India: WHO report

Cardiovascular Diseases Most Lethal Killers

New Delhi: Nearly 61% of deaths in India are now attributed to non-communicable diseases (NCDs), including heart disorders, cancer and diabetes, according to data released by the World Health Organisation (WHO) on Monday. Almost 23% of the population is at risk of premature death due to such diseases.

The UN agency has warned countries, including India, against premature deaths caused by NCDs and said governments must immediately step up efforts to tackle them. “Limited national progress has been made in the fight against NCDs — primarily cardiovascular and chronic respiratory diseases, cancers and diabetes — which are the world’s biggest killers, and claim the lives of 15 million people aged 30 to 70 years annually,” the WHO said.

According to the data, NCDs are responsible for 70% of deaths worldwide. In India, diseases like cancer, diabetes and heart problems were estimated to have killed a total of 58,17,000 people in 2016. While the percentage of deaths from NCDs is still lower in India as compared to many other countries, experts are concerned the burden is rapidly increasing because of changing lifestyles and factors like pollution, and tobacco and alcohol consumption.

Four risk factors responsible for a significant proportion of these diseases are tobacco use, unhealthy diet, physical inactivity, and harmful use of alcohol. The major metabolic risk factors are obesity, raised blood pressure, raised blood glucose and raised blood cholesterol levels, the report says.

Cardiovascular diseases (coronary heart disease, stroke, and hypertension) contribute to 45% of all NCD deaths, followed by chronic respiratory disease (22%), cancer (12%) and diabetes (3%).

Cancer, diabetes and heart diseases alone account for 55% of all premature deaths in India in the age group of 30-69 years.

“Bolder political action is needed to address constraints in controlling NCDs, including the mobilisation of domestic and external resources and safeguarding communities from interference by powerful economic operators,” said Tedros Adhanom Ghebreyesus, director-general of WHO.

Of late, the health ministry has initiated several measures to tackle the increasing burden of NCDs. For instance, the ministry has started a massive free door-to-door screening programme for early detection of cancer, heart disorders and diabetes. The programme was flagged off in February and aims to cover 200 districts by 2019. The government has also started schemes to set up cancer centres across the country. While 31 such hospitals have already been built, more are to be set up by 202
THE ASIAN DISEASE

Diabetes is becoming a regional epidemic. Are you—or your kids—at risk?

INDIA TODAY

The New Face of DIABETES
Is NCD a global crisis? **YES!**

Source:

Figure 1: Broad cause of death in countries, by World Bank income groups, 2008
NCDs: Economic Impact

- NCDs accounted for five of the six top causes of economic loss in 2008
 - Heart disease: $752bn
 - Stroke: $298bn
 - Diabetes: $204bn

NCDs cost developing countries up to 6.77% of GDP; this economic burden is more than that caused by Malaria (1960’s) or AIDS (1990’s) - IOM Report 2010

NCDs will lead to a loss of 30 Trillion Dollars globally up to 2030 representing 48% of global GDP in 2010

— Harvard + WEF Study 2011
Burden of Disease and Causes of Death

Burden of Disease

- **1998**
 - Communicable Diseases, Maternal & Perinatal Conditions: 16.7%
 - Non-Communicable Diseases: 33.0%
 - Injuries: 50.3%

- **2005**
 - Communicable Diseases, Maternal & Perinatal Conditions: 11.0%
 - Non-Communicable Diseases: 39.0%
 - Injuries: 50.0%

Main Causes of Death

- **2005**
 - Communicable Disease: 8.0%
 - Cardiovascular Disease: 10.8%
 - Other Chronic Diseases: 29.0%
 - Injuries: 36.2%
 - Cancer: 16.0%

- **2025 Forecast**
 - Communicable Disease: 11.9%
 - Cardiovascular Disease: 12.1%
 - Other Chronic Diseases: 19.1%
 - Injuries: 21.0%
 - Cancer: 35.9%

Sources: Report on Macroeconomics and Health in India (Burden of Disease in India, Background Papers) 2005; India Health Beat – a publication of WHO & Public Health Foundation of India (Jun 2012 Issue)
Number of people with diabetes by IDF Region, 2013

65 million: India
Trends in DM Prevalence

Professor Ahuja’s Studies:
- 1972: Urban Delhi - 2.3%
- 1991: Urban Delhi - 6.7%

Figure 2. Trends in the prevalence of diabetes mellitus in Indian urban and rural populations. A significantly increasing trend is apparent in urban populations (exponential trend $R^2 = 0.76$). Among rural populations, the prevalence is increasing at a slower rate ($R^2 = 0.43$) but has accelerated recently.
Rising Prevalence of Diabetes in Urban India

Over 14 years, DM prevalence increased by 72.3%

Prevalence rate – age standardized for Chennai Census 1991

Mohan et al, Diabetologia, 2006; 49: 1175
Ramachandran et al, Diabetes Care, 2008; 31: 893
Socio-Demographic-Nutritional Transition

- Mass migration of rural population into urban centers resulting in increasing the urban population & growth of cities.

- **Cause of urbanization:** "Migration" due to:
 - Better employment opportunities.
 - Better living standards.
 - Better availability of social services like Education, Health, Transport, Entertainment etc.
ICMR- INDIAB study-Phase-1
Weighted Prevalence of DM and Pre-DM

Chandigarh

Diabetes
Urban-14.2%
Rural –8.3%
Total- 13.6%
Pre diabetes-14.6%

Jharkhand

Diabetes
Urban- 13.5%
Rural – 3.0%
Total- 5.3%
Pre diabetes- 8.1%

Maharashtra

Diabetes
Urban-10.9%
Rural – 6.5%
Total-8.4%
Pre diabetes- 12.8%

Tamil Nadu

Diabetes
Urban- 13.7%
Rural – 7.8%
Total- 10.4%
Pre diabetes- 8.3%

Anjana et al, Diabetologia. 2011

DM: ~ 62.4 million
Pre-DM: ~ 77.2 million
CARRS Surveillance STUDY

Features:
- Largest Cohort modeled surveillance study in South Asia
- > 10,000 individuals from randomly chosen representative communities of Delhi and Chennai
- 20+ years, both genders, stratified for residence and location

<table>
<thead>
<tr>
<th></th>
<th>Chennai</th>
<th>Delhi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>Diabetes</td>
<td>20.0</td>
<td>20.8</td>
</tr>
</tbody>
</table>
Age-wise prevalence

Chennai and Delhi

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Pre-DM (%)</th>
<th>DM (%)</th>
<th>Pre-DM (%)</th>
<th>DM (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤24</td>
<td>5.0</td>
<td>0.3</td>
<td>21.3</td>
<td>0.0</td>
</tr>
<tr>
<td>25-34</td>
<td>15.7</td>
<td>5.2</td>
<td>32.5</td>
<td>4.3</td>
</tr>
<tr>
<td>35-44</td>
<td>21.2</td>
<td>14.9</td>
<td>42.1</td>
<td>10.9</td>
</tr>
<tr>
<td>45-54</td>
<td>24.4</td>
<td>28.8</td>
<td>41.5</td>
<td>23.8</td>
</tr>
<tr>
<td>55-64</td>
<td>18.6</td>
<td>39.7</td>
<td>34.7</td>
<td>35.6</td>
</tr>
<tr>
<td>≥ 65</td>
<td>21.0</td>
<td>45.3</td>
<td>37.8</td>
<td>36.4</td>
</tr>
</tbody>
</table>
What About Young India...
ICMR Young Diabetes Registry

<table>
<thead>
<tr>
<th>Type of diabetes</th>
<th>Data between 1/9/13 to till date (N = 734)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>638 (86.9)</td>
</tr>
<tr>
<td>Type 2</td>
<td>66 (9.0)</td>
</tr>
<tr>
<td>LADA</td>
<td>2 (0.3)</td>
</tr>
<tr>
<td>MODY</td>
<td>5 (0.7)</td>
</tr>
<tr>
<td>MMDM</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Gestational Diabetes</td>
<td>11 (1.5)</td>
</tr>
<tr>
<td>Drug Induced Diabetes</td>
<td>4 (0.5)</td>
</tr>
<tr>
<td>Chronic Pancreatitis</td>
<td>7 (0.9)</td>
</tr>
<tr>
<td>Secondary Diabetes & Others</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>Total</td>
<td>734</td>
</tr>
</tbody>
</table>

Public Hospital

- Type 1 (99.3)
- Type 2 (0.7)

Private Hospitals

- Type 1 (74.1)
- Type 2 (17.1)

Phase-I

- 1125 (88.9)
- 103 (8.1)
- 2 (0.2)
- 3 (0.2)
- 10 (0.8)
- 7 (0.6)
- 8 (0.6)
In two centres, almost 40% of young diabetics were type 2!!

So diabetes is hitting Indians earlier...
Youth onset (<25 yr) diabetes at Medanta Medicity (N=778, 2010-15)

- Type 1: ≤18 Years (87.0), 19-25 Years (59.1)
- Type 2: ≤18 Years (7.7), 19-25 Years (29.6)
- Others: ≤18 Years (4.3), 19-25 Years (9.4)
- Unclassified: ≤18 Years (1.0), 19-25 Years (2.0)

N= 575, N= 203
T1DM vs. T2DM at onset (Medanta data)

<table>
<thead>
<tr>
<th></th>
<th>Type 1 (n=467)</th>
<th>Type 2 (n=77)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male: Female</td>
<td>1.4:1</td>
<td>2:1</td>
</tr>
<tr>
<td>Age at onset</td>
<td>12.4±6.6</td>
<td>19.4±4.2</td>
</tr>
<tr>
<td>Family h/o T2</td>
<td>244 (52.2%)</td>
<td>69 (89.6%)</td>
</tr>
<tr>
<td>3 or more family members with T2</td>
<td>37 (7.9%)</td>
<td>30 (39%)</td>
</tr>
<tr>
<td>Osmotic symptoms</td>
<td>408 (87.4%)</td>
<td>41 (53.2%)</td>
</tr>
<tr>
<td>Weight loss</td>
<td>381 (81.6%)</td>
<td>32 (41.6%)</td>
</tr>
<tr>
<td>Ketosis</td>
<td>243 (52%)</td>
<td>3 (3.9%)</td>
</tr>
<tr>
<td>Incidental diagnosis</td>
<td>13 (2.8%)</td>
<td>19 (24.7%)</td>
</tr>
<tr>
<td>Other presentations</td>
<td>17 (3.6%)</td>
<td>18 (23.4%)</td>
</tr>
<tr>
<td>BG at onset</td>
<td>475 ±139</td>
<td>364 ±125</td>
</tr>
<tr>
<td>Positive GAD antibody</td>
<td>32/57 (56.1%)</td>
<td>1/15 (6.7%)</td>
</tr>
<tr>
<td>Fasting c peptide</td>
<td>0.62 ± 0.55</td>
<td>2.2 ± 2.1</td>
</tr>
</tbody>
</table>
Migrant south Asian people have a two to four-times higher risk of type 2 diabetes and develop diabetes 5–10 years earlier than do white European people

Sattar, Lancet 2015
Figure 2: Glycaemia over the life course and the effect of lifestyle intervention on diabetes progression in south Asians and white Europeans

South Asians develop diabetes about 5–10 years earlier than do Europeans and have more rapid progression from impaired glucose tolerance to overt diabetes. IGT= impaired glucose tolerance.
Figure 3: Hypothesised mechanisms for increased type 2 diabetes risk in South Asian people. A combination of structural and environmental factors interacts to reduce diabetes risk in this population.
Diabetes and India: the historical connection
The etymology of sugar can be traced to the Sanskrit ‘sarkara’ meaning gravel.
Alexander’s army was amazed to find a ‘non honey’ source of sweetness in India and introduced it to the world.
Is Diabetes A New Problem In India?

- In 1500 BCE, Indian physicians described “madhumeha” – sweet urine.
- Charaka described the disease in detail and distinguished between childhood diabetes or Type1 DM from adult diabetes or Type 2 Diabetes.
Dietary Factors Contributing to Diabetes
Main Source of Energy: **CARBOHYDRATES**

- **Starch**
 - E.g. potatoes, peas, corns, beans, lentils & grains

- **Sugar**

- **Fiber**

Carbohydrate
Sugar

- **Consuming sugar is considered to be the equivalent of smoking.**
- While honey and jaggery are perceived to be more ‘natural’, they provide about the same amount of calories as cane sugar.
- In terms of calories fruit juice is as bad as colas- a can of cola contains about 140 calories, and an equivalent amount of apple juice contains about 160!
Whole Grains v/s Refined Grains

Bran - rich in vitamins, minerals, and fiber

Germ - rich in essential fatty acids and Vit E

Endosperm - rich in starch
Effect of Refined Cereals/Sugars

Refined Cereals & Sugar
- Rapidly Metabolized
- Poor Satiety
- High Calorie Intake
- Blood Glucose \uparrow
- Insulin Secretion \downarrow

DIABETES & OBESITY
Wheat

• Cultivation thought to have started in Mediterranean/Central Asian region
• Reached India around 6,500 BCE.
• Staple for 1/3rds of earth's population.
• 20% of total calories/protein
Sift the Wheat from the Chaff

Fact
• Consume whole wheat including the fiber rich bran and mineral rich germ layer
• Nutritious, absorbed slowly and does not stimulate appetite

Wheat Belly
• High GI, stimulates appetite
• Weight Gain & Diabetes
Presence of lethal peptides such as Amylopectin A, that forces people to overeat.

Scientific evidence of wheat addiction and overeating is not convincing.

No grain with a ‘killer’ peptide could have been consumed for centuries.
Rice: Different Varieties

WHITE RICE
- High GI
- Less Fat
- Low in Fiber

RICE FLAKES
(poha)
- High GI
- High in Iron

BROWN RICE
- Moderate GI
- Less Fat
- High in Fiber
SUGARS & CARBOHYDRATES is not all you should watch out in a hearty meal ...
Excess Dietary Fat Provides Extra Calories

Weight Gain Risk of Diabetes & CVD

…Fat Could Impact Too!
Sugar substitutes
Sugar substitutes

- **Artificial sweeteners**: synthetic sugar substitutes include saccharin, cyclamate, aspartame, sucralose, acesulfame and neotame.

- **Sugar alcohols**: Low calorie sugar alcohols (they don’t contain alcohol!) like erythritol, mannitol, sorbitol are derived from plant sugars. Sugar alcohols also add some texture to food.
Sugar substitutes

- Using artificial sweeteners may provoke a sense of complacency and drive us into eating other high calorie food more liberally.
- It is common to see people digging into their brownies and pizzas but taking extra care to order only diet colas.
- “No sugar” labels can be misleading!
Thank You