

Food 3D Printing for Personalized Nutrition

Jeyan A. Moses

NIFTEM – Thanjavur

Thanjavur, Tamil Nadu, India

Food 3D Printing

CONCEPTS

- · Additive manufacturing
- Layer-by-layer fabrication
- Constructs complex structures at ease
- Sustainability & minimal wastage

APPROACHES & MATERIAL SUPPLIES

- Extrusion-type food 3DP most popular
- 3 classes of printing inks:
 - ✓ Natively printable foods
 - ✓ Non-printable foods
 - ✓ Alternative food sources

For further reading:

Nachal, N., Moses, J. A., Karthik, P., & Anandharamakrishnan, C. (2019). Applications of 3D printing in food processing. Food Engineering Reviews, 11(3), 123-141.

3D printing in the food industry

For Personalized Nutrition

Nutritious 3D-printed foods for children with asthetic improvement

- School surveys shape & flavor preferences
- Millet-pulse indigenous composite flour
- 3DP snacks
 - Rich in fiber (~17.79%), protein (~10.41%) & minerals

- Customized shapes
- Egg yolk and egg white fractions
 - Solves storage, handling and transportation challenges

Krishnaraj, P., Anukiruthika, T., Choudhary, P., Moses, J. A., & Anandharamakrishnan, C. (2019). 3D extrusion printing and post-processing of fibre-rich snack from indigenous composite flour. Food and Bioprocess Technology, 12(10), 1776-1786.

5

Nutraceutical-loaded & functional 3D-printed foods

Co-axial electrospraying

Leena, M. M., Anukiruthika, T., Moses, J. A., & Anandharamakrishnan, C. (2022). Co-delivery of curcumin and resveratrol through electrosprayed core-shell nanoparticles in 3D printed hydrogel. Food Hydrocolloids, 124, 107200.

High-protein 3D-printed foods

3D printed chicken nugget & fiber-enriched nugget

3D printed mushroom – based snack

3D printed plant-based meat analog

Pulse-millet-oilseed based gluten-free, soy-free product with 27% protein

Wilson, A., Anukiruthika, T., Moses, J. A., & Anandharamakrishnan, C. (2020). Customized shapes for chicken meat—based products: feasibility study on 3D-printed nuggets. Food and bioprocess technology, 13(11), 1968-1983.

Keerthana, K., Anukiruthika, T., Moses, J. A., & Anandharamakrishnan, C. (2020). Development of fiber-enriched 3D printed snacks from alternative foods: A study on button mushroom. Journal of Food Engineering, 287, 110116.

3DFP as a drug vehicle

- Most common 3DP dosage form tablets
- Most used soft materials with biological applications

Effect of material composition and 3D printing temperature on hot-melt extrusion of ethyl cellulose based MCT oil oleogel

Kavimughil, Maria L., Moses, J.A., & Anandharamakrishnan, C. Effect of material composition and 3D printing temperature on hot-melt extrusion of ethyl cellulose based MCT oil oleogel.

Personalized foods for astronauts (space) and soldiers (military)

Why?	What?	How?
Long-duration missions	Creating foods faster and safe than a chef	Print and eat on site
Reduce downtime in refilling supplies	Print on demand (real time monitoring of nutritional needs	Zero waste
Boredom – the need for variety!	using biosensors)	

Digitally controlled tailormade meals

Noodles from potato peel waste

 3D printed rice starch constructs & the impact of postprocessing

Theagarajan, R., Moses, J. A., & Anandharamakrishnan, C. (2020). 3D extrusion printability of rice starch and optimization of process variables. Food and Bioprocess Technology, 13(6), 1048-1062.

Theagarajan, R., Nimbkar, S., Moses, J. A., & Anandharamakrishnan, C. (2021). Effect of post-processing treatments on the quality of three-dimensional printed rice starch constructs. Journal of Food Process Engineering, 44(9), e13772.

Muthurajan, M., Veeramani, A., Rahul, T., Gupta, R. K., Anukiruthika, T., Moses, J. A., & Anandharamakrishnan, C. (2021). Valorization of Food Industry Waste Streams Using 3D Food Printing: A Study on Noodles Prepared from Potato Peel Waste. Food and Bioprocess Technology, 14(10), 1817-1834.

3D-printed texture modified foods for those with swallowing diorders

- Modifying texture and consistency
- To meet Int.
 Dysphagia Diet
 Standardization
 Initative Categories

 Structured foods with controlled glycemic responses

Pearl millet fortified idli batter, 3D printed with different infill levels and fermented

Probiotics for improved digestive health

Prebiotic wall material

Printing in the inhouse fabricated food 3D printer CARK

Survival and viability studies

Encapsulation
of
Lactiplantibacillus
plantarum
NCIM 2083

Extrusion 3D printing

Post-processing

In vitro digestion study

Storage study

- 1. RT
- 2. 4°C

- 1. Spray drying
- 2. Freeze drying
- 3. Spray-freeze drying
- 4. Refractance window drying

- 1. Freeze drying
- 2. Hot air drying
- 3. Microwave drying
- 4. Refractance window drying

High-fibre composite flourbased material supply

Vinitha, K., Leena, M. M., Moses, J. A., & Anandharamakrishnan, C. (2021). Size-dependent enhancement in salt perception: Spraying approaches to reduce sodium content in foods. Powder Technology, 378, 237-245.

Vinitha, K., Sethupathy, P., Moses, J. A., & Anandharamakrishnan, C. (2022). Conventional and Emerging Approaches for Reducing Dietary Intake of Salt. Food Research International, 110933.0

3D printing of polymeric materials that act as a supporting structure for the growth of cells & tissues

The fascinating science of

Self-assembly of small micro-sized smart particles that change patterns when acted upon by stimuli

Smart material changes its shape/colour/flavour/nutrition when acted upon by stimuli

Sethupathy, P., Priyadarshini, S. R., Moses, J. A., & Anandharamakrishnan, C. (2021). Matrix-dependent oral processing, oro-sensory perception, and glycemic index of chocolate bars. Journal of Food Processing and Preservation, 45(12), e16067.

Sethupathy, P., Sivakamasundari, S. K., Moses, J. A., & Anandharamakrishnan, C. (2021). Effect of varietal differences on the oral processing behavior and bolus properties of cooked rice. International Journal of Food Engineering, 17(3), 177-188.

Payal, A., Elumalai, A., Moses, J. A., & Anandharamakrishnan, C. (2021). An investigation on gastric emptying behavior of apple in the dynamic digestion model ARK® and its validation using MRI of human subjects–A pilot study. Biochemical Engineering Journal, 175, 108134.

Priyadarshini, S. R., Moses, J. A., & Anandharamakrishnan, C. (2021). Prediction of in-vitro glycemic responses of biscuits in an engineered small intestine system. Food Research International, 147, 110459.

Jayan, H., Leena, M. M., Sundari, S. S., Moses, J. A., & Anandharamakrishnan, C. (2019). Improvement of bioavailability for resveratrol through encapsulation in zein using electrospraying technique. Journal of Functional Foods, 57, 417-424.

Challenges & the future

X

Batch consistency

X

Consumer awareness & acceptance

X

Speed & capacities

X

Digital piracy & ethics

+

Novel range of products & new manufacturing practices

++

IoT integrated smart 3DFP & position in the digital food & nutrition market +++

3D food printers in every kitchen?

++++

Data analytics linked individual preference databases

Thank you!

Nida, S., Anukiruthika, T., Moses, J. A., & Anandharamakrishnan, C. (2021). 3D printing of grinding and milling fractions of rice husk. Waste and Biomass Valorization, 12(1), 81-90.

Wilson, A., Anukiruthika, T., Moses, J. A., & Anandharamakrishnan, C. (2021). Preparation of fiber-enriched chicken meat constructs using 3D printing. Journal of Culinary Science & Technology, 1-12.

Jagadiswaran, B., Alagarasan, V., Palanivelu, P., Theagarajan, R., Moses, J. A., & Anandharamakrishnan, C. (2021). Valorization of food industry waste and by-products using 3D printing: A study on the development of value-added functional cookies. Future Foods, 4, 100036.

Nida, S., Moses, J. A., & Anandharamakrishnan, C. (2021). 3D printed food package casings from sugarcane bagasse: a waste valorization study. Biomass Conversion and Biorefinery, 1-11.

Nida, S., Moses, J. A., & Anandharamakrishnan, C. (2022). 3D Extrusion Printability of Sugarcane Bagasse Blended with Banana Peel for Prospective Food Packaging Applications. Sugar Tech, 1-15.

Conflict of Interest

None