
*No Conflict of Interest for this presentation

Bioactive Peptides

Proteins in foods do not only serve as nutrients but also perform physiochemical roles that promote various health benefits. (Froetschel, 1996)

Bioactive peptides (BAPs) are organic substances formed by amino acids joined by covalent bonds also known as amide or peptide bonds. (Walther & Sieber, 2011)

Bioactive peptides are structurally short chained form 2-20 amino acids residues and molecular weight <6000 kDa. (Hartmann & Meisel, 2007)


```
Peptide Bond
between Amino Acid
```

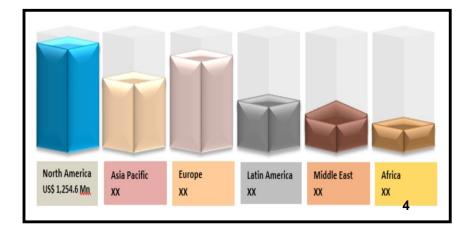
2

Cont...

Bioactive peptides are specific protein fragments that have a positive impact on the functioning or conditions of living beings, thereby improving their health. (Korhonen & Pihlanto, 2006)

Bioactive peptides are inactive within the sequence of the parent protein, but after the released by enzymatic hydrolysis, exert various physiological functions. (Park, 2009)

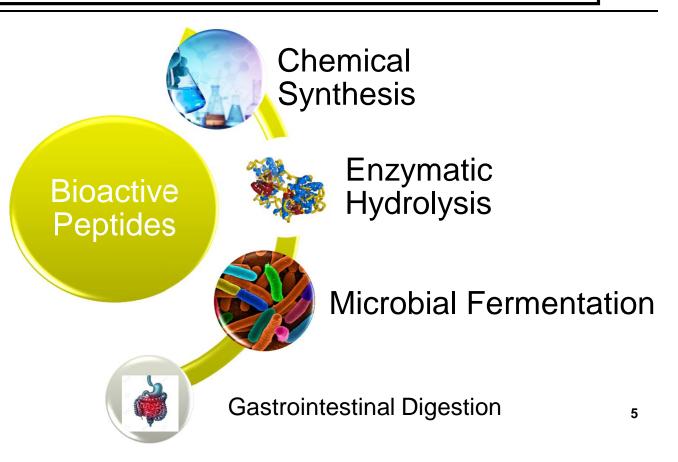
The bioactivity and functionality of peptides depend on the amino acid composition, sequences, and molecular masses. (Lassoued *et al.*, 2015)

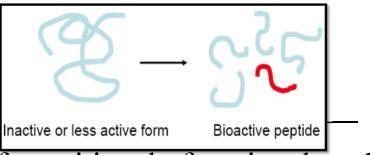

Bioactive peptides are known for their ability to inhibit protein-protein interactions.

More than 1500 different BAPs have been reported in a database named 'BIOPEP'. (Singh *et al.*, 2014)

Market status.....

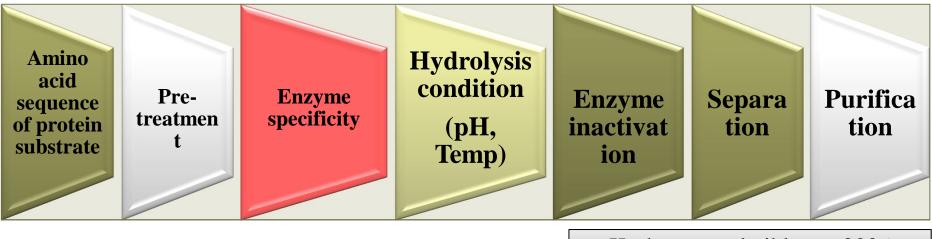
According to coherent market insight, 2019 the global bioactive peptide market size was valued at US\$ 3,265.2 Mn in 2017, and is expected to exhibit a CAGR of 9.4% over the forecast period (2018–2026).


North A	merica	dom	inating	the
global	bioac	tive	pepti	des
market i	n 2017	repo	orted 35.	9%
market	share	in	terms	of
revenue.				


Global bioactive peptide market value by region

(https://www.coherentmarketinsights.com/market-insight/bioactive-peptide-market-3018)

Synthesis of Bioactive Peptides


Milk protein

- □ Milk proteins exert a wide range of nutritional, functional and biological activities
- □ Physiologically active peptides are derived from milk proteins
- □ These peptides are inactive within the sequence of the parent protein molecule
- □ Released during gastric digestion or food processing (e.g. renneting or fermentation of milk)
- □ Bioactive peptides usually contain 3 20 amino acid residues per molecule
- □ Many bioactive peptides possess multi-functional properties
- □ At present, milk proteins are the most important source of bioactive peptides.

- A variety of naturally formed bioactive peptides have been found in fermented dairy products, such as yoghurt, dahi, probiotic dairy foods and cheese
- □ Bioactive peptides are released upon fermentation of milk using different live proteolytic microorganisms or proteolytic enzymes derived from such microorganisms.
- Fermentation of milk with certain dairy starters, peptides with various bioactivities can be formed and detected in an active form even in the final product i.e. Fermented milk and cheese
- □ They can be absorbed and reach peripheral organs

Bioactivity of milk peptides depend on

Korhonen and pihlanto, 2006

More than 60 peptides approved by US Food and Drug Administration (FDA) as a medicines on the market and this is expected to grow significantly with approximately 140 peptide drugs currently in clinical trials and more than 500 therapeutic peptides in preclinical development.

Fosgerau and Hoffmann, 2015

Bioactive peptides released from milk proteins by proteolytic enzymes of different microorganisms

Microorganism	Precursor protein	Peptide sequence	Bioactivity
Lactobacillus helveticus and Saccharomyces cerevisiae	β -casein, α -casein	Val-Pro-Pro, Ile-Pro-Pro	ACE inhibitor, Antihypertensive
<i>Lactobacillus</i> GG enzymes + pepsin and trypsin	β-casein, αs1 casein	Tyr-Pro-Phe-Pro, Ala-Val-Pro-Tyr-ProGln-Arg, Thr-Thr-Met-Pro-Leu-Trp	opioid, ACE inhibitor, immunostimulating
Lb. helveticus CP90 proteinase	β-casein	Lys-Val-Leu-Pro-Val-Pro-(Glu)	ACE inhibitor
Lb. helveticus CPN 4	whey proteins	Tyr-Pro	ACE inhibitor
Lb. delbrueckii ssp. bulgaricus IFO13953	α-casein	Ala-Arg-His-Pro-His-Pro-His-Leu- -Ser-Phe-Met	Antioxidative
<i>Lb. rhamnosus</i> + hydrolysis with pepsin and Corolase PP	β-casein	Asp-Lys-Ile-His-Pro-Phe, Tyr-Gln-Glu-Pro-Val-Leu, Val-Lys-Glu-Ala-Met-Ala-Pro-Lys	ACE inhibitor Antioxidative
Lb. delbrueckii ssp. bulgaricus	β-casein	Ser-Lys-Val-Tyr-Pro-Phe-Pro-Gly- Pro-Ile	ACE inhibitor

Dziuba & Dziuba, 2014

9

Work done at Anand

Considering the potential of *Lactobacillus rhamnosus* for producing Angiotensin I-Converting Enzyme (ACE) inhibitory peptides in fermented camel milk (Indian breed)

J Food Sci Technol https://doi.org/10.1007/s13197-022-05357-9

ORIGINAL ARTICLE

Characterization of Angiotensin I-Converting Enzyme (ACE) inhibitory peptides produced in fermented camel milk (Indian breed) by *Lactobacillus acidophilus* NCDC-15

Divyang Solanki¹ · Amar Sakure² · Sangeeta Prakash³ · Subrota Hati¹

Purification and characterization of ACE-inhibitory peptides derived from fermented Camel milk

In Silico and *In vitro* Analysis of Novel Angiotensin I-Converting Enzyme (ACE) inhibitory Bioactive Peptides Derived from Fermented Camel Milk (*Camelus dromedarius*)

Divyangkumar Solanki¹ · Subrota Hati¹ · Amar Sakure¹

Lactic cultures used for ACE-inhibitory activity

Sr. No	Culture Name	Source of Isolation	Selective Media	Growth Conditions
1	L. rhamnosus MTCC 5945 (NS4)	Shrikhand	MRS Agar	37 ⁰ C for 24h
2	L. acidophilus NCDC (298)	NDRI, Karnal	MRS Agar	37°C for 24h
3	L. helveticus MTCC 5463 (V3)	Human vagina	MRS Agar	37°C for 24h
4	L. acidophilus NCDC (015)	NDRI, Karnal	MRS Agar	37°C for 24h
5	L. rhamnosus MTCC 5946 (NS6)	Shrikhand	MRS Agar	37 ⁰ C for 24h
6	S. thermophilus MTCC 5460 (MD2)	Market dahi	M17 Agar	42°C for 24h
7	L. bulgaricus NCDC (09)	NDRI, Karnal	MRS Agar	37 ⁰ C for 24h
8	Lactococcus lactis subsp. lactis MTCC 25066 (NK6)	Dahi	M17 Agar	30°C for 24h
9	<i>L. fermentum</i> TDS030603 (LBF)	Dahi	MRS Agar	37°C for 24h

ACE-inhibitory activity of lactic cultures incubated at 37°C up to 48h

Treatment (T)	Period (Time in hours)*			
	0	12	24	48
		% ACE-inhibi	tory activity	
NS4	56.25±2.25	75.50±0.50	71.38±1.61	78.09±1.10
298	55.74±0.22	67.55±1.50	74.93±0.94	68.41±1.28
NS6	56.05±0.54	70.83±1.04	72.69±1.60	75.75±0.25
015	56.22±1.07	70.19±0.80	78.022±2.55	78.33±2.51
V3	50.99±1.38	52±2.0	63.18±3.20	68.56±4.55
NK6	56.11±2.45	77.08±1.29	83.27±3.74	85.30±1.13
MD2	55.16±0.76	69.35±3.08	81.86±1.06	84.45±1.52
09	56.34±1.24	74.71±1.83	74.93±0.059	76.75±1.14
LBF	55.66±0.73	69.66±5.08	71.84±1.94	73.93±0.74

Peptide content (%) produced by selected lactic cultures under optimized growth conditions (10kDa Permeate and Retentate)

Lactic	Peptide production (%) (10kDa	Peptide production (%) (10kDa
cultures	Permeate)	Retentate)
LBF	65.52±2.723 ^a	$26.22{\pm}1.538^{d}$
09	59.29±0.761 ^b	40.50±1.291 ^b
NS4	48.98±0.818°	56.44 ± 1.296^{a}
015	55.04±1.376 ^d	36.79±1.684°

		MS/MS Ions Sear			_
	Your name		5 - 7 S	YOUR@GMAIL.COM	
		D:\Analyst Data\Projects\Prot	tein Identification\Dat	ta\30042016\SET1.wiff	
ee 🗋 9apps 🛗 Bookmarks Toolbar 💾 Mozilla Firefox 🛛	Database(s)	Vertebrates_EST Rodents_EST	Enzyme	NoCleave V	
		Prokaryotes_EST Plants_EST	Allow up to	1 ♥ missed cleavages	
MATRIX SCIENCE		Mus_EST	Quantitation	None	1
SCIENCE	Taxonomy	All entries		v	
Home Mascot database search Pro	Fixed modifications	Carbamidomethyl (C)	>	Acetyl (K) Acetyl (N-term)	,
Access Mascot Server Database sea	rd		<	Acetyl (Protein N-term)	- 1
Mascot database search > Access Mascot Serv	ret			Amidated (C-term) Amidated (Protein C-term)	
		Display all modifications	: []	Ammonia-loss (N-term C) Biotin (K)	
	Variable modifications	Carboxymethyl (C) Oxidation (M)	>	Biotin (N-term) Carbamyl (K)	
			<	Carbamyl (N-term) Cation:Na (C-term)	
	Peptide tol. ±	1.2 Da 🗸 # ¹³ C	0 ♥ MS/MS tol. ±		
	Peptide charge			Average O	
		D:\Analyst Data\Projects\Defa		• • Average •	
		Mascot generic V	Precursor	m/z	
	Instrument		Error tolerant		
	Decoy	Dendart		AUTO V hits	
	Decoy	Start Search	Report top	Reset Form	
			ned ⊿[h	nelp]	E
All O Non	tide summa	iry. 15 Ion Searc		nelp]	E
t you expected? Try of the pep och parameters pe of search	tide summa : MS/M : NoCle	iry. 15 Ion Searc	h	nelp]	E
ou expected? Try z ^o the pep <i>h parameters</i> e of search yme d modifications able modifications	ide summa : MS/M : NoCle : d'Car : d'Car	IS Ion Search eave bamidometh boxymethyl	h Iyl (C)	nelp]	E
ou expected? Try 2 ^{the pep <i>p parameters</i> e of search yme d modifications able modifications s values}	: MS/M : NoCle : d'Car : d'Car : d'Car : Mond	IS Ion Search eave bamidometh boxymethyl iisotopic	h Iyl (C)	nelp]	E
a expected? Try withe pep parameters of search me modifications ble modifications values in mass	tide summa : MS/M : NoCle : d'Car : d'Car : Mono : Unres	ITY. IS Ion Searci eave bamidometh boxymethyl bisotopic stricted	h Iyl (C)	nelp]	E
expected? Try of the pep parameters of search ne modifications ble modifications values in mass de mass tolerance	: MS/N : NoCle : d'Car : d'Car : Mono : Unres : ± 1.8	ITY. IS Ion Searce eave bamidometh boxymethyl isotopic stricted 3 Da	h Iyl (C)	nelp]	E
expected? Try 2 ^{the} pep parameters of search e modifications le modifications values n mass e mass tolerance ent mass tolerance	: MS/N : NoCle : d'Car : d'Car : Mono : Unres : ± 1.8	ITY. IS Ion Searce eave bamidometh boxymethyl isotopic stricted 3 Da	h Iyl (C)	nelp]	E
pected? Try of the pep rameters search odifications e modifications lues mass mass tolerance nt mass tolerance sed cleavages ment type	: MS/N : NoClu : Car : Car : Mono : Unre: : ± 1.8 : ce : ± 0.9 : Defau	IS Ion Search eave bamidometh boxymethyl isotopic stricted 3 Da 9 Da	h Iyl (C)	nelp]	E
expected? Try of the pep parameters of search ne modifications ble modifications values in mass de mass tolerance nent mass tolerance nissed cleavages ument type	tide summa : MS/N : NoCle : @ Car : Mono : Unre: : ± 1.8 ce : ± 0.9 : 0	IS Ion Search eave bamidometh boxymethyl isotopic stricted 3 Da 9 Da	h Iyl (C)	nelp]	E
a expected? Try withe pep parameters of search ne modifications ble modifications values in mass de mass tolerance nent mass tolerance nissed cleavages ument type per of queries	: MS/N : NoClu : Car : Car : Mono : Unre: : ± 1.8 : ce : ± 0.9 : Defau	IS Ion Search eave bamidometh boxymethyl isotopic stricted 3 Da 9 Da	h Iyl (C)	nelp]	
e of search me d modifications able modifications able modifications s values ein mass ide mass tolerance ment mass tolerance missed cleavages rument type ber of queries	: MS/N : NoCli : Car : Car : Mono : Unre: : ± 1.8 : ce : ± 0.9 : Defau	IS Ion Search eave bamidometh boxymethyl isotopic stricted 3 Da 9 Da	h Iyl (C)	nelp]	
e of search me d modifications able modifications able modifications s values ein mass ide mass tolerance ment mass tolerance missed cleavages rument type ber of queries	: MS/N : NoCli : Car : Car : Mono : Unre: : ± 1.8 : ce : ± 0.9 : Defau	IS Ion Search eave bamidometh boxymethyl isotopic stricted 3 Da 9 Da	h Iyl (C)	nelp]	
ou expected? Try 2 ^{the} pep th parameters e of search yme d modifications able modifications able modifications s values tein mass tide mass tolerance yment mass tolerance missed cleavages rument type aber of queries <i>distribution</i>	: MS/N : NoCli : Car : Car : Mono : Unre: : ± 1.8 : ce : ± 0.9 : Defau	IS Ion Search eave bamidometh boxymethyl isotopic stricted 3 Da 9 Da	h Iyl (C)	nelp]	
rou expected? Try in the pep <i>h parameters</i> e of search yme	: MS/N : NoCli : Car : Car : Mono : Unre: : ± 1.8 : ce : ± 0.9 : Defau	IS Ion Search eave bamidometh boxymethyl isotopic stricted 3 Da 9 Da	h Iyl (C)	nelp]	1Ŭ
ou expected? Try 2 ^{the} pep <i>h parameters</i> e of search yme ed modifications able modifications is values tein mass tide mass tolerance gment mass tolerance inissed cleavages rrument type aber of queries <i>distribution</i>	: MS/N : NoCli : Car : Car : Mono : Unre: : ± 1.8 : ce : ± 0.9 : Defau	IS Ion Search eave bamidometh boxymethyl isotopic stricted 3 Da 9 Da	h Iyl (C)	nelp]	1Ŭ
u expected? Try of the pep parameters of search me I modifications bble modifications values ein mass ide mass tolerance ment mass tolerance missed cleavages ument type ber of queries	: MS/N : NoCli : Car : Car : Mono : Unre: : ± 1.8 : ce : ± 0.9 : Defau	IS Ion Search eave bamidometh boxymethyl isotopic stricted 3 Da 9 Da	h Iyl (C)	nelp]	

Peptide score distribution. Ions score is $-10 \log(P)$, where *P* is the probability that the observed match is a random event. There are **7** peptide matches above identity threshold and **7** matches above homology threshold for **957** queries. Histogram score range is (0, 17). On average, individual ions scores > **9** (beyond green shading) indicate **identity or extensive homology**

Peptide Score

http://www.matrixscience.com/cgi/search_form .pl?FORMVER=2&SEARCH=MIS

Peptides were matched in MASCOT (online server)

•Peptide with RED BOLD fashion with significant score was confirmed.

✓ATVQGGIMYRMPV

(Figueroa et al., 2011)

Confirmation of peptides sequence in camel milk proteins was performed using Peptide Match

□http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PA GE_TYPE=BlastSearch&LINK_LOC=blasthome

□(http://research.bioinformatics.udel.edu/peptidematch/ index.jsp).

(Tagliazucchi et al., 2016)

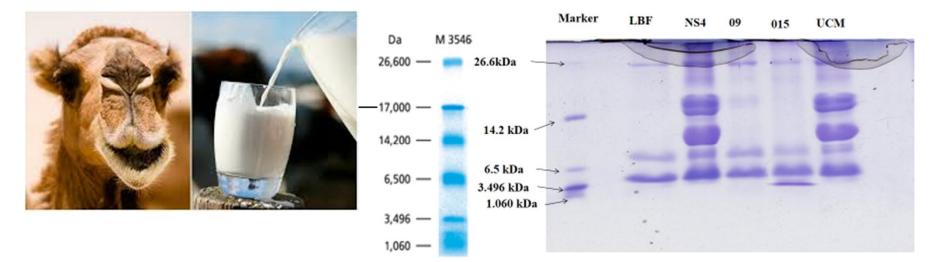
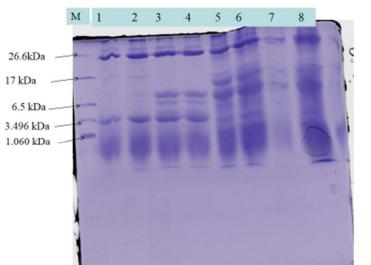



Fig.15 Protein profile of fermented and camel milk reveled by SDS-PAGE.

M=MARKER 1) 015 3kDa permeate 2) 09 3) LBF 4) NS4 5) 015 10kDa permeate 6) 09 7) LBF 8) NS4

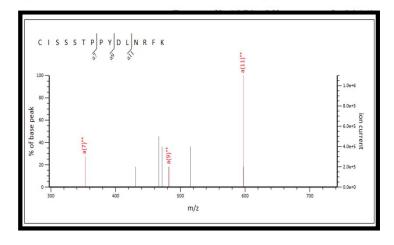


Fig.16 Protein profile of 3kDa and 10kDa permeate of fermented camel milk reveled by SDS-PAGE.

(Laemmli, 1970; Olivares et al., 2014)

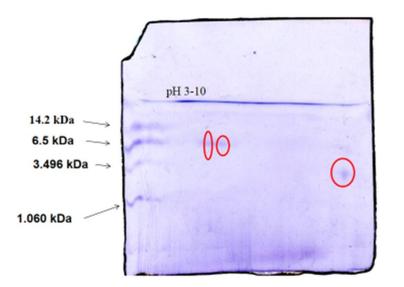


Fig.18- 2D gel electrophoresis of 3 Kda permeate 09

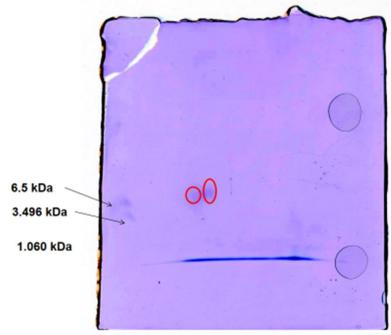
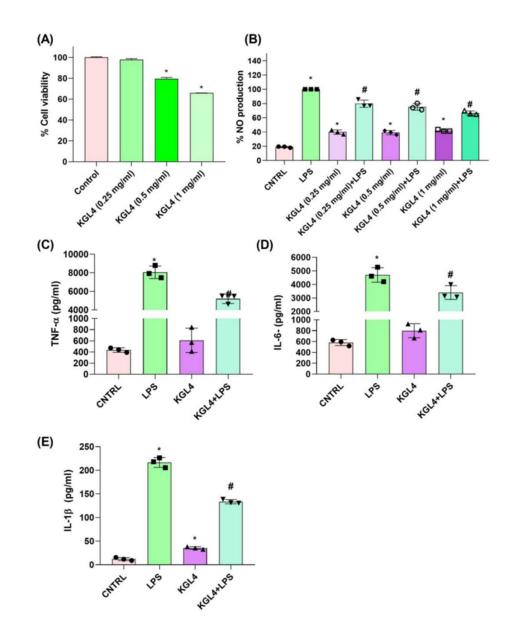



Fig.20- 2D gel electrophoresis of 3 Kda permeate LBF

During amino acid profiling, 015, LBF, NS4 and 09 produced peptides with amino acid sequences GPPYQPLVPR, CISSSTPPYDLNRFK, VCNYVSWIK and MDTIEPVSVACIS respectively from Betacasein f(225-229); Beta-casein f(31-34); Alpha S1- Casein f(190-193) and Alpha-lactalbumin f(42-43) in camel milk protein database (NCBI).

Effect of the Fermented camel milk with KGL4 on A) Viability of RAW 264.7 macrophage cells, (B) Dose dependency in NO production (C) TNF- α (D) IL-6 (E) IL-1 β measured in supernatants of LPS-stimulated RAW 264.7 macrophage cells. Data are presented as mean±SEM; n=5 in (A), n=3 in (B), n=3 in (C-E) and evaluated by one-way ANOVA followed by Tukey's post hoc test. *p (Patel et al. 2021) International Journal of Peptide Research and Therapeutics https://doi.org/10.1007/s10989-019-09902-7

Purification and Production of Novel Angiotensin I-Converting Enzyme (ACE) Inhibitory Bioactive Peptides Derived from Fermented Goat Milk

Heena Parmar¹ · Subrota Hati¹ · Gauravkumar Panchal¹ · Amar A. Sakure²

	L. rhamnosus (NK2) (KR080695)
	L. casei (NK9) (KR732325)
LAB cultures used in the study	L. paracasei (M16) (KU366368)
	L. fermentum TDS030603 (MTCC 25067) (LF)
	L. fermentum (M5) (KU366365)

- Fresh goat milk of Indian Surti breed (*Capra aegagrus hircus*) procured and filtered than heated at 90 °C for 10–15 min. Then stored at 5 ± 1 °C.
- Pure cultures were inoculated at the rate of 2% and incubated at 37 °C for 0, 6, 12, 24 and 48 h.

Parmar et al., 2019

LWT - Food Science and Technology xxx (xxxx) xxxx

Contents lists available at ScienceDirect

LWT - Food Science and Technology

journal homepage: www.elsevier.com/locate/lwt

Characterization and production of novel antioxidative peptides derived from fermented goat milk by L. fermentum

Gauravkumar Panchal^a, Subrota Hati^{a,*}, Amar Sakure^b

Goat milk (Surti breed, India) collected and sterilized at 121 °C for 15 min and stored at 5±2 °C.

Inoculating M4 (*L. fermentum*) culture at the rate of 2% and incubated for 0, 12, 24, 36 and 48 h at 37 °C.

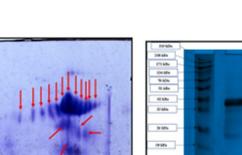
Antioxidant activity of Fermented got milk

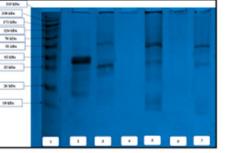
ABTS assay (2, 2-Azino-bis (3ethylbenzothaizoline 6-sulfonic acid) assay)

Hydroxyl free radical scavenging assay

Superoxide free radical scavenging assay

20

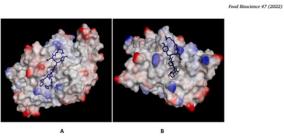

Panchal et al., 2019

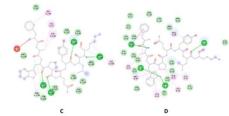


	Food Bioscience 47 (2022) 101666	
	Contents lists available at ScienceDirect	2
	Food Bioscience	
ELSEVIER	journal homepage: www.elsevier.com/locate/fbio	

Antioxidative, antimicrobial and anti-inflammatory activities and release of ultra-filtered antioxidative and antimicrobial peptides during fermentation of sheep milk: In-vitro, in-silico and molecular interaction studies

Jodhani Keyur Ashokbhai^a, Bethsheba Basaiawmoit^b, Sujit Das^b, Amar Sakure^c, Ruchika Maurya ^{d,e}, Mahendra Bishnoi^e, Kanthi Kiran Kondepudi^e, Srichandan Padhi^f, Amit Kumar Rai^f, Zhenbin Liu⁸, Subrota Hatia^{a,}

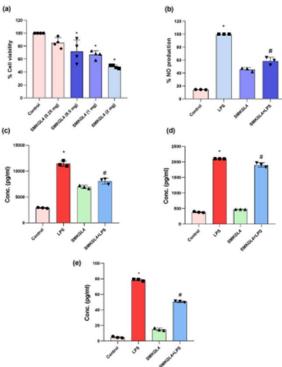



944 664

J.K. Ashokbhai et al.

Sille -

Tida 31da 111da


Table 4

Check for updates

All sequences found in study of fermentation of sheep milk produced by KGL4.

Culture	2D-PAGE Sequence	Score of peptide ranker	Charge	Toxicity	Molecular weight
KGL4	ITMPLW	0.59823	0.00	Non- toxic	1051.31
	FAWPQYLK	0.525769	1.00	Non- toxic	1034.31
	HKEMPFPK	0.859678	1.50	Non- toxic	760.05
	LDQWLCEK	0.906686	-1.00	Non- toxic	1052.35
	KADEKKFW	0.616444	1.00	Non- toxic	1013.33

J.K. Ashokbhai et al.

J Food Sci Technol https://doi.org/10.1007/s13197-021-05243-w

ORIGINAL ARTICLE

Peptidomic profiling of fermented goat milk: considering the fermentation-time dependent proteolysis by *Lactobacillus* and characterization of novel peptides with Antioxidative activity

Gauravkumar Panchal¹ · Amar Sakure² · Subrota Hati¹

Production and characterization of antioxidative peptides during lactic fermentation of goat milk

Indian J Dairy Sci 70(5):533-540(2017)

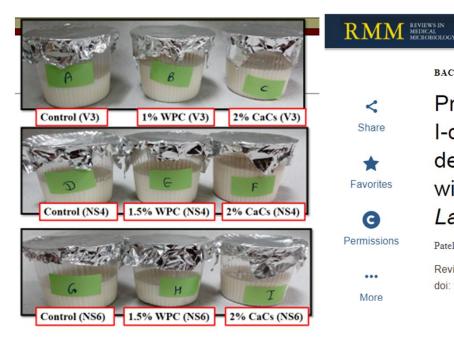
RESEARCHARTICLE

Significance of WPC and calcium caseinate on shelf-life study and textural profiles of dahi

Rekha S Patel, Subrota Hati, BM Mehta and Smitha B

Process optimization for the preparation of ACE inhibitory peptides rich dahi

<


Share

1

C

...

More

BACTERIOLOGY

Production of antihypertensive (angiotensin I-converting enzyme inhibitory) peptides derived from fermented milk supplemented with WPC70 and Calcium caseinate by Lactobacillus cultures

For Authors ~

Patel, Rekha; Hati, Subrota Author Information

Reviews in Medical Microbiology: January 2018 - Volume 29 - Issue 1 - p 30-40 doi: 10.1097/MRM.000000000000119

Articles & Issues ~

Conclusion

Bioactive peptides offer a new means to promote health and can provide health benefits beyond their basic nutritional role.

There is a tremendous global interest in promoting the use of food proteins/peptides as novel alternatives for present pharmaceutical therapeutics in the treatment and prevention of high blood pressure and other life style diseases.

Milk peptides are the most studied bioactive peptides and various health beneficial properties have also been studied.

Thanks.....for listening

