Animal Toxicity and Livestock Feeding Studies- Need and Approaches

B. Mohana Subramanian, M V Sc, Ph D., Scientist,
Translational Research Platform for Veterinary Biologicals, Chennai.
(A DBT-TANUVAS partnership program)

Safety assessment of GM food
Conventional food

- Plants are part of human food/animal feed
- History of substantial human/animal exposure
- GRAS
GM food

- In contrast GM foods has the genetic material derived from organisms that have not previously been present in the human diet to any great extent.

- The corresponding gene products are considered to be novel with respect to human consumption.
Focus of GM feed safety assessment

Intended effect Vs Unintended effect

Intended effect of genetic modification

• Insertion of target gene; Expression products of target gene;

• Assess the safety of the expressed protein which is not part of the conventional plant
Focus of GM feed safety assessment

Unintended effect
“consistent differences between the GM plant and its appropriate control lines, which go beyond the primary expected effect(s) of introducing the target gene(s)”

- Genetic re-arrangements or disruptions of metabolic pathways in the recipient plant through gene insertion.

- alterations in metabolic pathways, increased levels of endogenous toxins or allergens, or lower levels of essential nutrients, or expression of previously silent genes encoding toxins or allergens.
Animal toxicity and livestock feeding studies

To find out whether the GM food is

‘As Safe as’ and ‘As nutritious as’

its non-GM counter part (comparator)

The comparator provides the baseline for the food/feed safety assessment
Tests suggested by RCGM

- Acute Oral Safety Limit Study In Rats and Mice
- Sub-chronic Feeding Study In Rodents
- Protein Thermal Stability
- Pepsin Digestibility Assay
- Livestock Feeding Study
Tests suggested by RCGM

- Acute Oral Safety Limit Study In Rats and Mice
- Sub-chronic Feeding Study In Rodents
- Protein Thermal Stability
- Pepsin Digestibility Assay
- Livestock Feeding Study
Acute Oral Safety Limit Study In Rats and Mice

- Assessing the potential effects of the expression product(s) of the inserted gene(s)

- 14 day single dose acute toxicity study by oral route

- If treatment-related mortality, morbidity or clinical symptoms result, then further study may have to be considered for ascertaining the cause of toxicity
Acute Oral Safety Limit Study In Rats and Mice

- Limit dose of 2000 mg/kg

- The potential human dietary intake of functionally active Cry protein from Bt maize could range from 0.008 to 2 μg/kg body weight/day (Hammond and Koch, 2012).
Acute Oral Safety Limit Study In Rats and Mice

<table>
<thead>
<tr>
<th>Test substance</th>
<th>NOAEL(^a)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cry protein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cry1Ab</td>
<td>4000 mg/kg</td>
<td>Betz et al. (2000)</td>
</tr>
</tbody>
</table>

A 70-kg-body weight human adult would need to consume > 900,000 kg of grain in one day to attain the same acute dosage (4000 mg/kg) of Cry1Ab protein given to mice which produced no adverse effects (Hammond and Cockburn, 2008).
Tests suggested by RCGM

- Acute Oral Safety Limit Study In Rats and Mice
- **Sub-chronic Feeding Study In Rodents**
- Protein Thermal Stability
- Pepsin Digestibility Assay
- Livestock Feeding Study
Sub-chronic feeding study in rodents
(90 day feeding study)

• Performed when compositional equivalence cannot be established

• Provides information on the possible health hazards likely to arise from repeated exposure over a prolonged period of time

• Provides information on the major toxic effects, including possible target organs, and the possibility of cumulative effects.

• Assessment of potential to cause neurotoxic, immunological or reproductive organ effects, which may warrant further in-depth investigation.

• Goal is to determine if unintended differences occurred during production of a GM resulting in adverse effects
Sub-chronic feeding study in rodents

<table>
<thead>
<tr>
<th>Test article</th>
<th>Dose/dietary level</th>
<th>Study type and test animal</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bt crop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bt tomato</td>
<td>10% in diet<sup>a</sup></td>
<td>90-day rat</td>
<td>Noteborn et al. (1995)</td>
</tr>
<tr>
<td>Bt/HT<sup>b</sup> maize(ECB<sup>c</sup>/RR<sup>d</sup>)</td>
<td>11/33% in diet<sup>a</sup></td>
<td>90-day rat</td>
<td>EFSA (2005d)</td>
</tr>
<tr>
<td>Bt/HT maize(CRW<sup>e</sup>/RR)</td>
<td>11/33% in diet<sup>a</sup></td>
<td>90-day rat</td>
<td>EFSA (2005e)</td>
</tr>
<tr>
<td>Bt/HT maize(ECB/CRW/RR)</td>
<td>11/33% in diet<sup>a</sup></td>
<td>90-day rat</td>
<td>EFSA (2005b)</td>
</tr>
<tr>
<td>Bt maize(ECB/CRW)</td>
<td>11/33% in diet<sup>a</sup></td>
<td>90-day rat</td>
<td>EFSA (2005a)</td>
</tr>
<tr>
<td>Bt maize (CRW)</td>
<td>11/33% in diet<sup>a</sup></td>
<td>90-day rat</td>
<td>Hammond et al. (2006b)</td>
</tr>
<tr>
<td>Bt maize (ECB)</td>
<td>11/33% in diet<sup>a</sup></td>
<td>90-day rat</td>
<td>Hammond et al. (2006a)</td>
</tr>
<tr>
<td>Bt cotton</td>
<td>10% in diet<sup>a</sup></td>
<td>90-day rat</td>
<td>Dryzga et al. (2007)</td>
</tr>
<tr>
<td>Bt rice</td>
<td>60% in diet<sup>a</sup></td>
<td>90-day rat</td>
<td>Schroeder et al. (2007)</td>
</tr>
<tr>
<td>Bt/HT maize(CRW/Gluf<sup>f</sup>)</td>
<td>35% in diet<sup>a</sup></td>
<td>90-day rat</td>
<td>Melley et al. (2007)</td>
</tr>
<tr>
<td>Bt/HT maize(CRW/RR)</td>
<td>11/33% in diet<sup>a</sup></td>
<td>90-day rat</td>
<td>Healy et al. (2006)</td>
</tr>
<tr>
<td>Bt maize (CRW)</td>
<td>50/70% in diet<sup>a</sup></td>
<td>90-day rat</td>
<td>He et al. (2009)</td>
</tr>
<tr>
<td>Bt maize(ECB/CRW)</td>
<td>34% in diet<sup>a</sup></td>
<td>90-day rat</td>
<td>Appenzeller et al. (2009)</td>
</tr>
<tr>
<td>Bt rice (Cry1Ab/Cry1Ac)</td>
<td>60% in diet<sup>a</sup></td>
<td>90-day rat</td>
<td>Wang et al. (2013)</td>
</tr>
<tr>
<td>Bt rice (Cry1Ac)</td>
<td>73–82% in diet<sup>a</sup></td>
<td>78-week rat</td>
<td>Zhang et al. (2014)</td>
</tr>
</tbody>
</table>

Multigenerational studies

<table>
<thead>
<tr>
<th>Test article</th>
<th>Dose/dietary level</th>
<th>Study type and test animal</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bt maize (ECB)</td>
<td>68% in diet<sup>a</sup></td>
<td>5-generation rat</td>
<td>Haryu et al. (2009)</td>
</tr>
<tr>
<td>Bt maize (ECB)</td>
<td>20% in diet<sup>a</sup></td>
<td>3-generation rat reproduction</td>
<td>Kılıç and Akay (2008)</td>
</tr>
</tbody>
</table>

^aPercent (w/w) maize, rice, or cottonseed meal added to the diet.

^bHT, herbicide tolerant.

^cECB, European corn borer.

^dRR, Roundup Ready® (tolerant to glyphosate herbicide).

^eCRW, corn rootworm.

^fGluf, glufosinate (tolerant to glufosinate herbicide).
Chronic Dietary Exposure Assessment (Hammond and Cockburn, 2008)

- The average corn consumption in the UK for adults is ~16 g corn/ person/day.
 70 kg body wt/person = 0.23 g/kg

- The average adult dietary intake of Cry1Ab protein would be: 0.23 g/kg/day.
 0.3 mg/g corn = 0.07 mg/kg for an adult (0.00007 mg/kg)

- The average rat dietary intake of Cry1Ab protein in a 90-day feeding study is 25 g corn/kg BW.
 0.3 mg/g corn = 7.5 mg/kg

- The margin of safety for chronic dietary exposure to Cry1Ab protein is 7.5 mg/kg divided by 0.07 mg/kg = 107 X

The 90 day sub-chronic study reflects eating >100x human dose of GM whole grain (1.6 kg/day) for 90 continuous days
Sub-chronic feeding study in rodents

EFSA GMO panel, 2008

• Feeding trial results of many GM plants (Maize, potatoes, rice, soybeans and tomatoes) on mice or rats

• Traits for herbicide tolerance and/or insect resistance

• Majority of these experiments did not indicate clinical effects or histo-pathological abnormalities in organs or tissues of exposed animal
Tests suggested by RCGM

- Acute Oral Safety Limit Study In Rats and Mice
- Sub-chronic Feeding Study In Rodents
- Protein Thermal Stability
- Pepsin Digestibility Assay
- Livestock Feeding Study
Safety Assessment for Allergenicity
(Weight of evidence)

A gene is introduced into a GM plant resulting in the formation of a new protein.

- **Gene Source**: Is the source organism for the new gene known to cause allergies?
 - yes
 - no

- **Sequence Comparison**: Is the amino acid sequence of the new protein similar to any known allergens?
 - yes
 - no

 - yes
 - no

- **Blood Serum Test**: Does the new protein react with blood serum from people who are allergic to the source organism?
 - yes
 - no

- **Blood Serum Test**: Does the new protein react with blood serum collected from different people sensitive to a wide range of allergens?
 - yes
 - no

- **Stability During Digestion**: Artificial stomach test - Does the protein break down quickly?
 - yes
 - no

- **Animal Testing**: Do test animals have allergic reactions to the new protein?
 - yes
 - no

- **Probable Allergen**:
 - higher
 - lower

- **Likelihood of Allergenic Potential**:
 - higher
 - lower
Looking ahead

- How do we design the acute toxicity studies for the GE plants with no protein product (for eg. RNAi based plants: potential for off-target regulation in mammals)?

- Can NGS be used to sequence the complete genome of GE plant? Can it be deduced with parental line?
Looking ahead

Can omics approach supplement compositional analysis?
Tests suggested by RCGM

- Acute Oral Safety Limit Study In Rats and Mice
- Sub-chronic Feeding Study In Rodents
- Protein Thermal Stability
- Pepsin Digestibility Assay
- Livestock Feeding Study
Nutritional equivalence

• Nutrition and nutritional value of food and feed are major determinants of human and animal well-being

• Nutritional quality and equivalence of GM food should be ensured

• It is important to demonstrate that a food derived from GM plants is not only as safe but also has the same nutritional values/characteristics as the conventional comparator
Compositional analysis

• Compositional analysis is the cornerstone of nutritional assessment

• Numerous reports available comparing the composition of GM plants modified for herbicide tolerance and insect resistance to their near isogenic counterparts

• Indicate compositional equivalence except for the inserted traits

• Even if it is statistically different, well within the ranges of commercial varieties
Need for animal feeding studies

Compositional analysis does not provide information on

1. Digestibility

2. Bio-availability

Published feeding studies with food producing animals fed with feedstuffs from GM plants with input traits in comparison with near isogenic plants (summarized by Flachowsky et al., 2005a)

<table>
<thead>
<tr>
<th>Animal species/ Categories</th>
<th>No of experiments</th>
<th>Nutritional assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruminants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy cows</td>
<td>23</td>
<td>No significant differences in composition</td>
</tr>
<tr>
<td>Beef cattle</td>
<td>14</td>
<td>No significant differences in digestibility of nutrients, animal health, animal performances, composition and quality of foods of animal origin between feed from near isogenic or GM plants</td>
</tr>
<tr>
<td>Others</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Pigs</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Poultry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laying hens</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Broilers</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Others (fish, rabbits, etc.)</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Animal feeding studies

For plants that have been genetically modified through the insertion of one or more genes the reported studies indicate,

• Once compositional equivalence has been established then nutritional equivalence can be assumed in poultry, beef cattle, dairy cows, pigs, etc.

• Further animal feeding studies are adding little to their nutritional assessment
Recommendations on animal numbers to be used in feeding trials

<table>
<thead>
<tr>
<th>Animal (species/categories)</th>
<th>Number of animals (assumed coefficient of variation 4–5%)</th>
<th>Duration of experiments</th>
<th>Composition of diets*</th>
<th>Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poultry for meat production</td>
<td>10–12 pens per treatment with 9–12 birds per pen</td>
<td>5 weeks or more</td>
<td>Balanced diets</td>
<td>Feed intake, weight gain, feed conversion</td>
</tr>
<tr>
<td>Poultry for egg production</td>
<td>12–15 replicates per treatment with 3–9 layers per pen</td>
<td>18–40 weeks of age, at least three 28-day phases</td>
<td>Balanced diets</td>
<td>Feed intake, egg production, feed conversion, egg quality</td>
</tr>
<tr>
<td>Pigs</td>
<td>6–9 replicates per treatment with 4 or more pigs per replicate</td>
<td>Piglets (7–12 kg), 4–6 weeks Growers (15–25 kg), 6–8 weeks</td>
<td>Balanced diets</td>
<td>Feed intake, weight gain, feed conversion, carcass quality</td>
</tr>
<tr>
<td>Growing and finishing ruminants</td>
<td>6–10 replicates per treatment with 6 or more cattle per replicate</td>
<td>90–120 days</td>
<td>Balanced diets</td>
<td>Feed intake, gain, feed conversion, carcass data</td>
</tr>
<tr>
<td>Lactating cows</td>
<td>12–16 cows per treatment</td>
<td>Latin square: 28 day periods</td>
<td>Balanced diets</td>
<td>Feed intake, milk production and composition</td>
</tr>
<tr>
<td></td>
<td>28 cows per treatment</td>
<td>Randomized block</td>
<td></td>
<td>body weight, body condition score (BCS), cell counts in milk, animal health composition</td>
</tr>
</tbody>
</table>

Feed from GM plants should be included in high portions in diets and compared with near isogenic counterparts.

Extracted from ILSI (2003).
GM crops with increased or modified nutritional characteristics

1. GM food with increased nutritional precursor (eg. Increased Beta carotene which is a precursor for Vitamin A)

2. Increase in the content of nutrients such as amino acids

3. Increased digestibility
Livestock feeding trial should verify the claims of the increased or changed nutritional properties of the GM crops

1. Bioavailability or conversion of nutrient precursors into nutrients (e.g. b-carotene)

2. Digestibility/bioavailability of nutrients (e.g. amino acids, fatty acids, vitamins)

3. Efficiency of substances which may improve nutrient digestibility/availability (e.g. enzymes)
EFSA Recommendations

(a) To provide a nutritional assessment of a GM feed ingredient in which a nutrient precursor such as β-carotene has been increased

<table>
<thead>
<tr>
<th>Treatment structure</th>
<th>Added supplement/comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 Near isogenic parental line</td>
<td>No supplement</td>
</tr>
<tr>
<td>T2 Near isogenic parental line</td>
<td>β-Carotene supplement provides β-carotene comparable with T3</td>
</tr>
<tr>
<td>T3 GM line, enhanced β-carotene</td>
<td>No β-carotene supplement needed, β-carotene content is comparable with T2</td>
</tr>
<tr>
<td>T4 Commercial varieties</td>
<td>Diet composition comparable to T1 and T2; unsupplemented and supplemented</td>
</tr>
</tbody>
</table>
EFSA Recommendations

Nutrient such as an amino acid or fatty acids has been increased.

<table>
<thead>
<tr>
<th>Treatment structure</th>
<th>Added supplement/comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 Near isogenic parental line</td>
<td>No amino acid supplement</td>
</tr>
<tr>
<td>T2 Near isogenic parental line</td>
<td>Amino acid supplement provides balanced diet</td>
</tr>
<tr>
<td>T3 GM line: enhanced amino acid content</td>
<td>No amino acid supplement needed. Balanced diet comparable with T2</td>
</tr>
<tr>
<td>T4 and other commercial varieties</td>
<td>Diet composition comparable with T1 and T2; unsupplemented and supplemented</td>
</tr>
</tbody>
</table>
(c) To provide a nutritional assessment of a GM feed ingredient when the digestibility of a specific nutrient such as nitrogen or fibre has been increased.

<table>
<thead>
<tr>
<th>Treatment structure</th>
<th>Level of feeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 Near isogenic parental line</td>
<td>Fixed</td>
</tr>
<tr>
<td>T2 GM line: enhanced digestibility</td>
<td>Fixed</td>
</tr>
<tr>
<td>T3 Near isogenic parental line</td>
<td>Ad libitum</td>
</tr>
<tr>
<td>T4 GM line: enhanced digestibility</td>
<td>Ad libitum</td>
</tr>
</tbody>
</table>
(f) To provide a nutritional assessment when the concentration of an anti-nutritional factor such as phytate is decreased in a GM line.

<table>
<thead>
<tr>
<th>Treatment structure</th>
<th>Added supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 Near isogenic parental line</td>
<td>No supplement</td>
</tr>
<tr>
<td>T2 Near isogenic parental line</td>
<td>Phosphorus supplement added.</td>
</tr>
<tr>
<td>T3 GM line: reduced phytate content</td>
<td>No phosphorus supplement added, but dietary phosphorus content comparable with T2</td>
</tr>
<tr>
<td>T4 and other commercial varieties</td>
<td>Diet composition with T1 and T2, unsupplemented and supplemented</td>
</tr>
</tbody>
</table>
Food for thought

- Is livestock feeding study relevant in plants that have been genetically modified through the insertion of one or more genes for Herbicide tolerance and insect resistance?
- Is establishing compositional equivalence sufficient?
- What is the appropriate groups for enhanced/changed nutritional traits? case-by-case decision is appropriate
Thank You