Safety Assessment of GM Mustard Hybrid A Case Study

Economic importance of mustard

- Mustard is one of the major oilseed crop of India grown in around 6-7 MHa of land
- □ India has emerged as the largest importer of vegetable oil
- **Domestic production is half of total consumption**

Three country comparison of rapeseed mustard yield

Development of GM mustard hybrid DMH-11

- GM mustard hybrid, DMH-11, has been developed by CGMCP, University of Delhi South Campus
- Trait introduced is male sterility and fertility restorer using barnase/barstar genes and bar gene has been used as a selectable marker
- The technology was ready by 2002 with funding from National Dairy Development Board and DBT
- Patented in US, Canada and India
- □ Field evaluation undertaken for 2 years after seeking regulatory approvals, primarily to study the efficacy of the system
- □ Trials conducted for two years by ICAR to check performance of hybrid
- □ The hybrid showed 20-30% heterosis over check varieties

Functions of the introduced genes

Genes	Codes for	Source	Trait
barnase	Barnase ribonuclease	Bacillus amyloliquefaciens	Male Sterility
barstar	Barnase ribonuclease inhibitor	Bacillus amyloliquefaciens	Fertility restorer
Bar*	Phosphinothricin acetyltransferase (PAT)	Streptomyces hygroscopicus	Marker

*The expression of the *bar* gene is not intended for herbicide tolerance; will be used only for selection of lines during the seed production.

Male sterile flower with barnase gene (Transgenic)

Regulatory approval status of GM canola with barnase/barstar system

Event	Country	Environment	Food and Feed	Food	Feed
ACS-BNØØ4-7 x ACS-	Australia	2003	2002		
BNØØ1-4 (MS1, RF1	<u>Canada</u>	1995		1995	1995
=>PGS1)	<u>China</u>		2004		
	European Union		2005		
	<u>Japan</u>	1996		1996	1996
	<u>Korea</u>			2005	2008
	South Africa		2001		
	United States	2002	1996		
ACS-BNØØ4-7 x ACS-	<u>Australia</u>	2003	2002		
BNØØ2-5 (MS1, RF2	<u>Canada</u>	1995		1995	1995
=>PGS2)	<u>China</u>		2004		
	European Union		2005		
	<u>Japan</u>	1997		1997	1997
	<u>Korea</u>			2005	2008
	South Africa		2001		
	United States	2002	1996		
ACS-BNØØ5-8 x ACS-	<u>Australia</u>	2003	2002		
BNØØ3-6 (MS8xRF3)	<u>Canada</u>	1996		1997	1996
	<u>China</u>		2004		
	European Union		2005		
	<u>Japan</u>	1998		1997	1998
	<u>Korea</u>			2005	2005
	<u>Mexico</u>		2004		
	South Africa		2001		
	United States	1999	1996		

Studies conducted on DMH-11 and its parental lines

Event generation	\succ	Gene sequences, constructs, transformation and molecular			
and Molecular		characterization			
characterization	\succ	Expression studies for the inserted genes			
Food/feed safety	\checkmark	Cloning, expression, purification and production of expressed proteins			
studies		in heterologous system			
	\succ	Acute oral toxicity with pure protein			
	\succ	Sub-chronic toxicity with whole grain/edible plant parts			
	\succ	Compositional analysis			
Allergenicity	\succ	Bioinformatics analysis			
Studies	\succ	Pepsin digestibility			
	\succ	Heat stability			
Environmental		BRL-1 field trials for two years and BRL-II trials for one year			
safety studies	\succ	Weediness potential and aggressiveness parameters			
	\succ	Crossability and pollen flow studies			
	\succ	Pollination behavior, pollen morphology and physiology			
	\succ	Impact on soil microflora			
Detection protocols	\succ	Protocol for testing at a level of detection (LOD) of 0.01%			
	\succ	Development of ELISA kits			

BRL-I & II confined field trials

Conducted under the Coordination of Directorate of Rapeseed-Mustard Research, Bharatpur During Rabi 2010 and 2011, 2014

Lines tested

- i. Varuna Barnase bn 3.6 *bar*, *barnase*
- ii. EH2 Barstar modbs 2.99 *bar*, *barstar*
- iii. Varuna (also a national check)
- iv. EH2
- v. DMH-11 bar, barnase, barstar
- vi. RL 1359/ Maya (local checks)

Mean Seed yield (Kg/Ha) of DMH-11 (BRL- 1 and 2)

S No	Entry	Mean S	Seed Yield	Ovorall	% Increase	
		2010-11	2011-12	2014-15	Mean	over
1	Varuna	2093	2617	1887	2199	28.41
2	Varuna (barnase)	2096	2640	1861	2199	
3	EH-2	1897	2007	1378	1761	
4	EH-2 (barstar)	2009	1856	1558	1808	
5	Maya/RL-1359 (ZC)	2037	2323	1776	2045	38.05
6	DMH-11	2600	3485	2386	2824	

Studies undertaken by CROs

Activities	CRO
Cloning and purification and Production of sufficient quantities of pure proteins Bar, Barnase and Barstar	Premas Biotech, Gurgaon
Development of ELISA kits for the three proteins	Amar Immunodiagnostics Hyderabad
Assessment of possible Allergenicity (bioinformatics studies), heat stability and pepsin digestibility	NIN, Hyderabad
Acute oral toxicity studies and sub-chronic toxicity studies	NIN, Hyderabad
Compositional analysis	NIN, Hyderabad
Impact on soil microflora	IMTECH, Chandigarh