Control of Emerging Foodborne Pathogens (An Industry Perspective)

ILSI-ICMSF Symposium
New Delhi
21-22 October 2008

R. Bruce Tompkin
Food Safety Consultant
LaGrange, IL USA
Four steps lead from detection to control of emerging pathogens
1. Detection

Laboratory

Healthcare provider

General public

Local Health Department

Local/Region/State/Province/Country

National/Regional Reporting System

Surveillance

Universities

Agencies

Industry

Regulations

Codex Codes of Practice, etc

International Reporting System

New Regulations

Reporting

and

Control
1. Detection

- Laboratory
- Healthcare provider
- General public

2. Investigation

- Local Health Department
- National Health Agencies
- Industry
- Universities
1. Detection
 - Laboratory
 - Healthcare provider
 - General public

Local Health Department

2. Investigation
 - Local/Region/State/Province/Country
 - National Health Agencies
 - Industry
 - Universities

3. Surveillance & Reporting
 - Local/Region/State/Province/Country
 - National Reporting System
 - National Regulations

4. Control
 - Local/Region/State/Province/Country
 - National Reporting System
 - Codex Codes of Practice, etc

International Reporting System
1. Detection
Detecting “new” foodborne pathogens

<1900 V. cholera, T. spiralis, C. botulinum, Salmonella, Shigella

1900-10 B. melitensis

1910-20 S. aureus, foodborne polio

1920-30

1930-40 S. aureus, hepatitis A

1940-50 B. cereus, C. perfringens, V. parahemolyticus
Detecting “new” foodborne pathogens

1950-60
L. monocytogenes, C. perfringens, V. parahemolyticus, Anisakidae

1960-70
B. cereus, V. parahemolyticus, V. vulnificus, aflatoxin and other mycotoxins

1970-80
C. jejuni, Y. enterocolitica, Norwalk virus, Giardia, vomitoxin

1980-90
L. monocytogenes, E. coli O157:H7, E. sakazakii

1990-00
Cyclospora, Cryptosporidium, nvCJD

2000-10

2. Investigation
Investigation

- Case definition
- Symptoms and severity of disease
- How disease occurs - infection, toxin, virulence factors, etc
- Methods to detect and quantify
- Sources and how humans are exposed
- Effect of temperature, pH, a_w, etc. on growth and survival
- Where is control possible in the food chain
- How to control the pathogen (GHP, HACCP)
- Degree of control (prevent, eliminate, reduce)
3. Surveillance and reporting
Some benefits of surveillance

- Trends in the incidence of disease can be measured
- The steps in the food chain that must be controlled can be identified
- The impact of public health policies and industry efforts can be measured
- The role of specific foods can be estimated
Surveillance can lead to control strategies

- Trends in incidence of the disease can be measured
- The steps in the food chain that must be controlled can be identified
- The impact of public health policy and industry efforts can be measured
- The role of specific foods can be estimated
Targeting specific foods for control
Examples of targeting foods

Y. enterocolitica
Raw pork, fermented meats with pork

L. monocytogenes
RTE foods in which growth can occur

E. sakazakii
Powdered infant formula

E. coli O157:H7
Ground beef, leafy greens
Vehicles of foodborne *E. coli* O157 outbreaks in the USA, 1982-2002

Surveillance systems

Enteric pathogens

- Passive systems (e.g., physician reports)
- Active systems
 - CaliciNet
 - European network for Norovirus
 - FoodNet
 - PulseNet
 - Enter-net
 - Global Salm-Surv
WHO Global Salm-Surv Centers of Excellence are designated by the WHO Global Salm-Surv Steering Committee to serve several countries in a region.
Salmonella serotypes 2000-2004

Source: WHO Global Salm-Surv Report 2005
Trends of VTEC 2000-05 (Data from 21 countries)

Anon. 2007. Enter-Net Annual Report for 2005
Examples of targeting pathogens

Which strains are more likely to be involved in human disease?

- *Y. enterocolitica* serotypes 0:3; 0:5,27; 0:8; 0:9
- Certain epidemic clones of *L. monocytogenes*
- Monophasic *S. Enterica* serovar 4, [5],12:1,-
- Certain phage types of *S. Enteritidis*
Trends of *S. Enteritidis* phage types in nine European countries

Historically

- Problems expand as they become more widely known.
- Pathogens with newly acquired virulence factors will spread.
4. Control
Where in the food chain can a pathogen best be controlled?

- Farm
- Aquaculture
- Wild

Processing plant (Magic box)

Retail, foodservice

Home
Commercial issues of emerging pathogens

- Transmission of disease by employees.
 - Noroviruses, Hepatitis A
Commercial issues of emerging pathogens

- Transmission of disease by employees.
 - Noroviruses, Hepatitis A

- Consumer perceptions about the safety of food.
 - Beef/BSE
 - Poultry/avian influenza
 - Spinach/ *E. coli* O157:H7
 - Tomatoes, peppers/ *Salmonella*
 - Peanut butter/ *Salmonella*
Commercial issues of emerging pathogens

- Transmission of disease by employees.
 - Noroviruses, Hepatitis A

- Consumer perceptions about the safety of food.
 - Beef/BSE
 - Poultry/avian influenza
 - Spinach/ *E. coli* O157:H7
 - Tomatoes, peppers/*Salmonella*
 - Peanut butter/ *Salmonella*

- Major customers’ (e.g., retailers) reaction.
 - More testing!
Commercial issues of emerging pathogens

- Is it possible to:
 - lessen the impact on your business?
 - shorten the investigational phase?
 - identify and implement controls more quickly?
Industry can improve its management of emerging pathogens
Example: *L. monocytogenes* in RTE meat and poultry products

- Sampled products and environment beginning in 1987
- Shared data with trade association and competitors
- Shared data with USDA from 1990 to 2003
- Developed control measures, shared with competitors and USDA
- Created videos and published best-practice guides
- Held 5 annual workshops for suppliers, customers, co-packers; USDA, FDA, CDC participated
- Shared information with consumer groups
Some control measures that helped

- Validated kill steps (e.g., cooking, fermenting/drying)
- Weekly equipment & environmental sampling program
- Covered & steamed critical equipment (e.g., collators, slicers & packaging equipment)
- Added citric acid to brine chill systems (pH ≤ 3.5)
Some control measures that helped

- Prevented recontamination after the kill step by detecting and eliminating harborage sites
- Improved equipment design for cleanability
- Added inhibitors to products (e.g., lactate, diacetate)
- Pasteurized packaged product (steam, hot water, UHP)
Benefits of the *Listeria* control program

- Consumer protection
- Regulatory compliance
- Business protection
- Refrigerated products have consistently longer shelf lives
USDA results for *Lm* in RTE meat and poultry products

Source: Scott and Huffman. 2007. ISOPOL XVI (Updated with 2007 results)
Listeriosis - USA

Cases per 100,000

National Health Objective
Other examples of success in pathogen control
Chicken at retail - The Netherlands, 1995-2002

Salmonella spp.

Percent of samples positive

Prevalence of *S. Enteritidis* and *S. Typhimurium* in flocks of laying hens: Oct 2004 – Sept 2005

Source: Sheehan and van Oort. 2006. World Poultry 22(9):2-4
Total human salmonellosis 2000-05
(data from 26 countries)

Anon. 2007. Enter-Net Annual Report for 2005
Illness due to *E. coli* O157:H7 - USA

Cases per 100,000

1996 to 2007

National Health Objective
What about the future?

- Improved surveillance systems and methodologies
What about the future?

- Improved surveillance systems and methodologies
- New technologies will be used for control
 - *L. monocytogenes*
 - In-pack pasteurization (e.g., hot water, UHP)
 - Additives to inhibit growth
 - *Salmonella, Campylobacter, VTEC*
 - Vaccination, probiotics, etc will be used to reduce human enteric pathogens in animals
 - Improved decontamination of carcasses
What about the future?

- Improved surveillance systems and methodologies
- New technologies will be used for control
 - *L. monocytogenes*
 - In-pack pasteurization (e.g., hot water, UHP)
 - Additives to inhibit growth
 - *Salmonella, Campylobacter, VTEC*
 - Vaccination, probiotics, etc will be used to reduce human enteric pathogens in animals
 - Improved decontamination of carcasses
- The significance of viruses will be clarified and strategies for improved control will be developed
Viruses

<table>
<thead>
<tr>
<th></th>
<th>% of total foodborne disease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cases</td>
</tr>
<tr>
<td>Norwalk-like</td>
<td>66.6</td>
</tr>
<tr>
<td>Rotavirus</td>
<td>0.3</td>
</tr>
<tr>
<td>Astrovirus</td>
<td>0.3</td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Viruses

- Data from 6 states in the USA:
 - ~50% of all foodborne outbreaks were due to noroviruses
 - salads, sandwiches and fresh produce accounted for >56% of those outbreaks.

Conclusions

- Almost 125 years have passed since Koch’s investigation of *V. cholerae*.
- Many new microbial hazards have been discovered.
- Tremendous changes have occurred in the food chain.
- Improved epidemiologic and surveillance systems have expanded our knowledge.
- Industry’s food safety systems can and will continue to evolve to meet the challenges of new emerging pathogens.