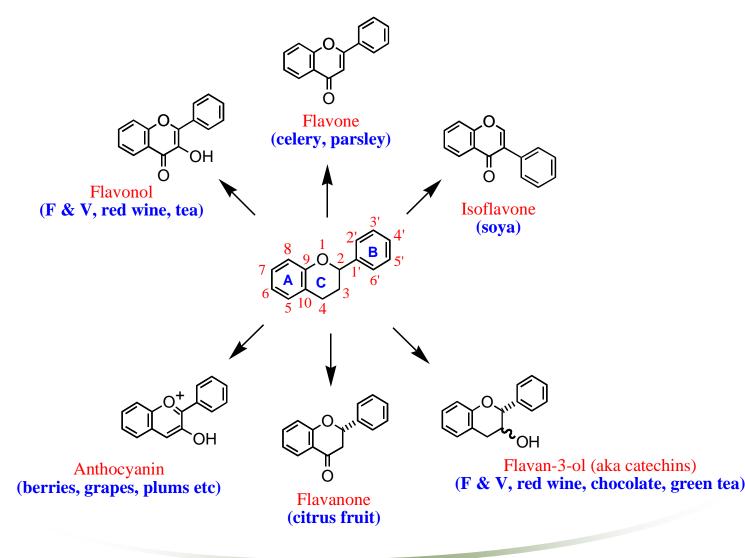
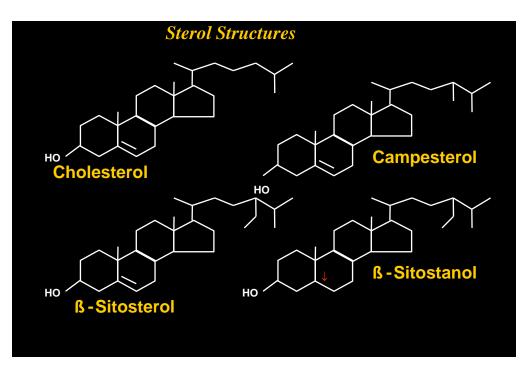
Phytonutrients: Polyphenols, Phytosterols and Other Antioxidants


Institute of Himalayan Bioresource Technology, Palampur (H.P.) India (Council of Scientific & Industrial Research)

Post Box No. – 06 Palampur-176061 (H.P.) India Website: http://www.ihbt.res.in E-mail: director@ihbt.res.in EPABX: 91-233338-39,230742-43,230431 Fax: 91-1894-230433 / 230428


Polyphenolics: Flavonoid Group

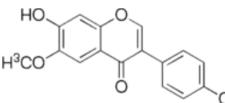
Common C₆-C₃-C₆ Flavonoid Structures

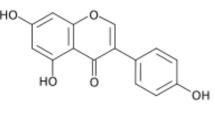
PHYTOSTEROLS Plant Sterols

Nomenclature for steroid skeleton

- Present in diet (200 400 mg / d) in small amounts in vegetable oils, nuts, seeds, legumes.
- Need 1.5-2g for efficacy.
- 2500 tonnes oil needed for 1 tonne plant sterols

PHYTOHORMONES: Plant Estrogens

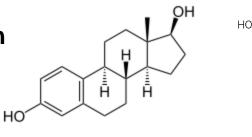

Isoflavones

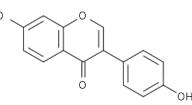

1. most concentrated in soy beans (genistein, glycitein and daidzein)

2. soy bean has 2-4 milligrams isoflavone/gram

3. predominantly genistein found in legumes and pomegranate seeds

HC H₃CC

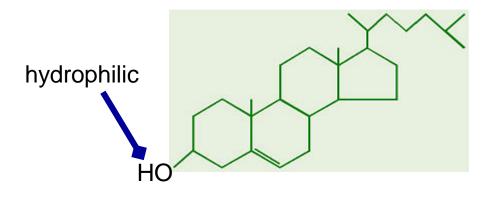




2'

Glycitein

Genistein


17β-estradiol

Daidzein

CHOLESTEROL FACTS

synthesized from acetyl CoA and eliminated as bile acids precursor of all other steroids in the body product of animal metabolism - in foods of animal origin amphipathic lipid (hydrophobic and hydrophilic portions) storage form is cholesterol ester found in most tissues. essential structural component of membranes transported in the circulation in lipoproteins

Cholesterol ester (1st ring only) R = fatty acid hydrocarbon chain

OTHER ANTIOXIDANTS

1. Phenolic Acids

Ellagic acid, Chlorogenic acid, P-Coumaric acid Cinnamic acid, Ferulic acid, Vanillin, Phytic acid Hydroxycinnamic acid

Other Non-Flavonoid Phenolics Curcumin, Resveratrol, Lignans

3. Glucosinolates

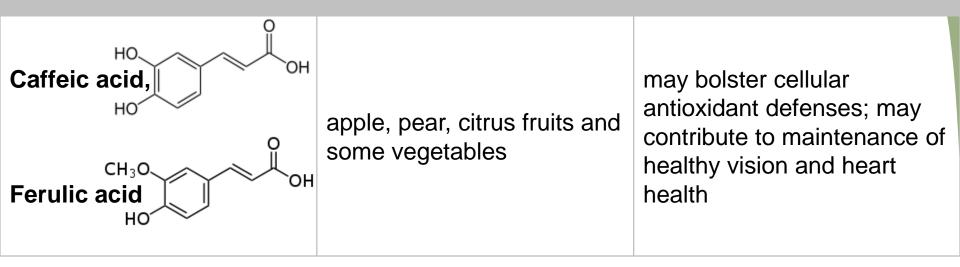
Phenylethyl Isothyocynate, Benzyl isothyocynate, Sulforaphane

4. Indoles

Indole-3-Carbinol (I3C)

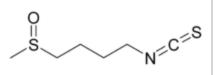


Examples of Phytonutrients					
Class/Components	Source	Potential Benefit			
FLAVONOIDS					
Anthocyanidins	berries, cherries, red grapes	bolster cellular antioxidant defenses; may contribute to maintenance of brain function			
Flavanols, Catechins, Epicatechins, Procyanidins	tea, cocoa, chocolate, apple and grapes	may contribute to maintenance of heart health			
Flavanones	citrus fruits	neutralize free radicals which may damage cells; bolster cellular antioxidant defenses			
Flavonols	onion, apple, tea, broccoli	neutralize free radicals which may damage cells; bolster cellular antioxidant defenses			
Proanthocvanidins	cranberries, cocoa, apple, strawberries, grapes, wine.	may contribute to maintenance of urinary tract			


Plant Stanols/Sterols

Free Stanols/Sterols	corn, soy, wheat, wood oils, fortified foods and beverages	may reduce risk of CHD	
Stanol/Sterol esters	fortified table spreads, stanol ester dietary supplements	may reduce risk of CHD	

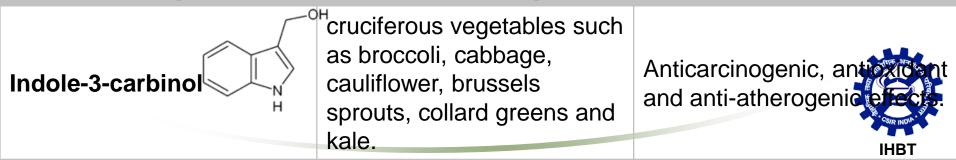
Phytoestrogens



Phenolic acids

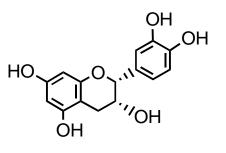
Isothiocyanates

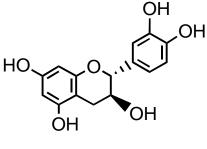
Sulforaphane


cauliflower, broccoli, broccoli sprouts, cabbage, kale, horseradish may enhance detoxification of undesirable compounds and bolster cellular antioxidant defenses

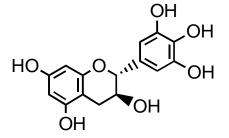
IHBT

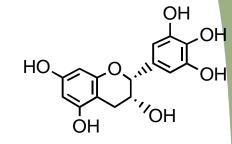
Other Non-Flavohold Phenolics


Curcumin	HO O O CH ₃ OOH O O O O O H O CH ₃ OH CH ₃ OH	Turmeric	curcumin may have antiarthritic, antiamyloid, anti- ischemic and anti- inflammatory properties
Resveratrol	HO OH	skin of red grapes and in other fruits	anti-cancer, anti- inflammatory, blood- sugar-lowering and other beneficial cardiovascular effects.
Secois Lignans	olariciresinol	flax, rye, some vegetables	may contribute to maintenance of heart health and healthy immune function

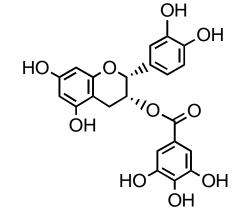

Indoles (Indole-3-Carbinol)

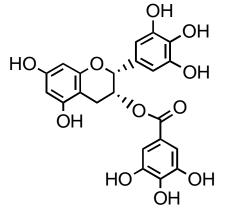
.

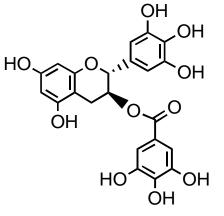

Green Tea Flavan-3-ol Structures



(-)-Epicatechin


(+)-Catechin

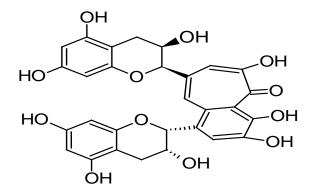




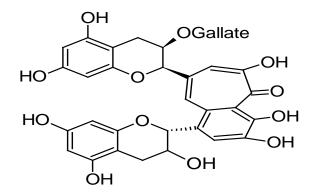
(+)-Gallocatechin

(-)-Epigallocatechin

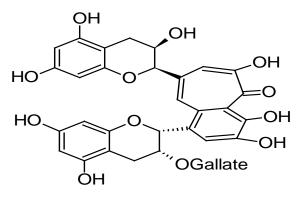
(-)-Epicatechin gallate

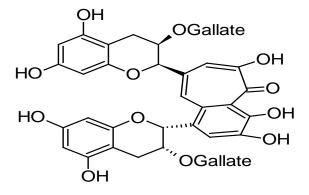

(-)-Epigallocatechin gallate

(+)-Gallocatechin gallate

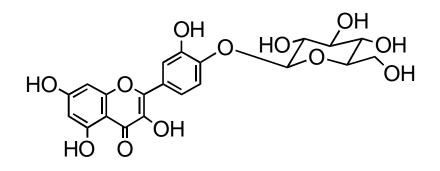


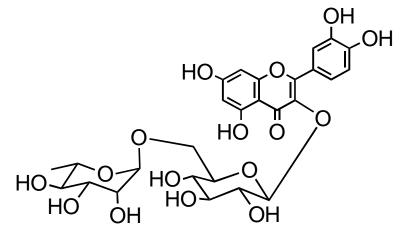
.


Principle phenolics in black tea


Theaflavin

Theaflavin-3'-gallate

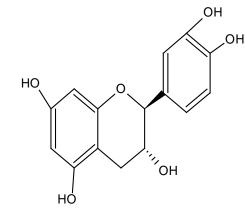

Theaflavin-3-gallate


Theaflavin-3,3'-digallate

Flavonol Glycosides

Quercetin-4'-glucoside

Quercetin-3-rutinoside


200 g fried onion - 257 μmoles

300 mL tomato juice- 176 µmoles

Cocoa and chocolate contain monomeric and polymeric flavan-3-ols

HO

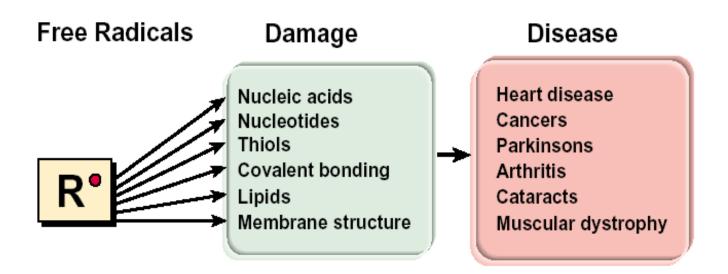
(-)-Epicatechin

HO (()

OH OH ″лон ΗÒ OH OH HO ′′он HO OH OH HO ′́он HO

Proanthocyanidin C1 trimer

Types of Free Radicals


Oxygen-centered radicals

Singlet oxygen, superoxide, hydroxyl radicals
 Sulfur-centered radicals

- Thiyl radical (RS•)
- Carbon-centered radicals
 •CCI3, CH2•CHOH
- Nitrogen-centered radicals
 NO•, R2NO•

FREE RADICAL DAMAGE AND DISEASE

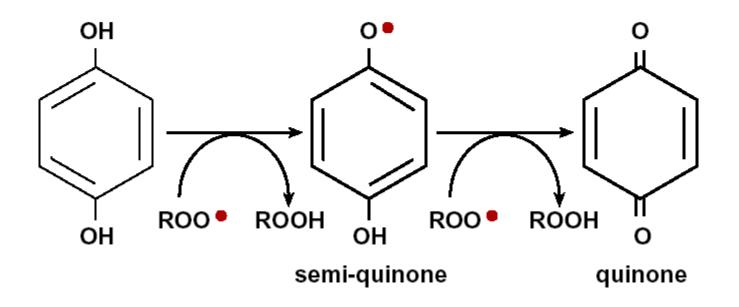
MODE OF ACTION

REACTIVE OXYGEN SPECIES (ROS)

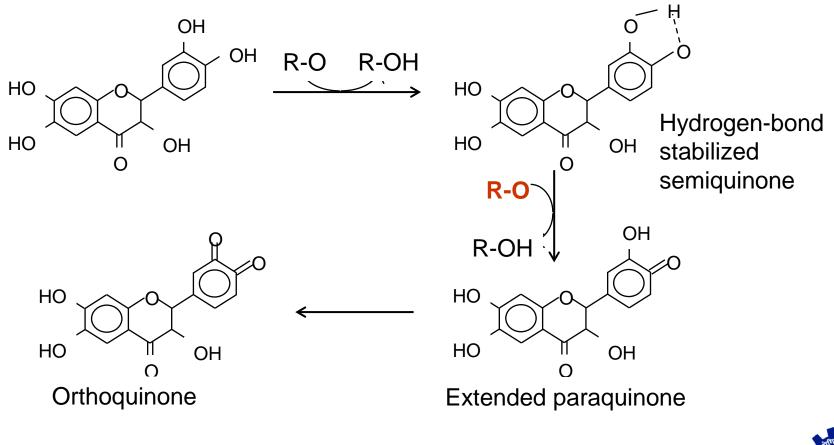
- Reactive Species
- Includes:
 - hydroxyl radicals (.OH)
 - superoxide anions (O[.]₂-)
 - singlet oxygen(1O2)
 - hydrogen peroxides (H2O2)
 - organic peroxides (R-OOH)
 - nitric oxide
- peroxynitrite

OXIDATIVE STRESS

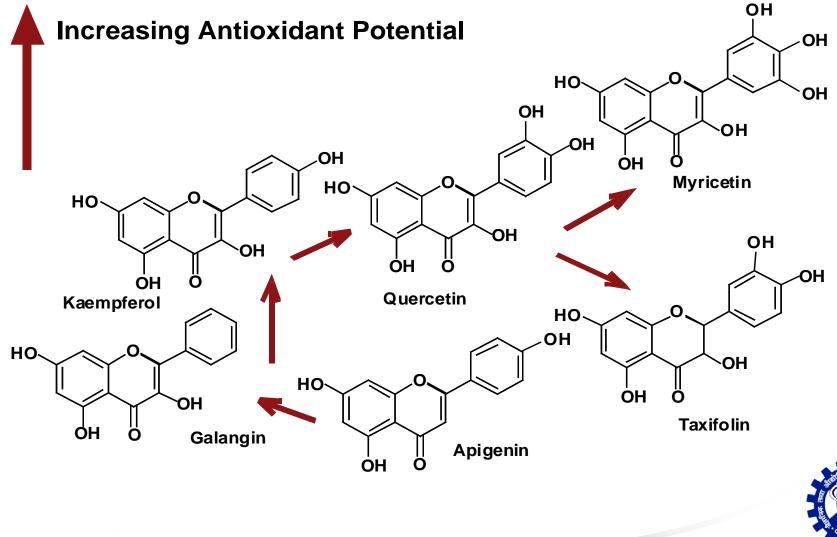
Oxidant


Description

•O ₂ -, <u>superoxide</u> anion	One-electron reduction state of O_2 , formed in many autoxidation reactions and by the <u>electron transport chain</u> . Rather unreactive but can release Fe ²⁺ from iron-sulfur proteins and <u>ferritin</u> . Undergoes dismutation to form H ₂ O ₂ spontaneously or by enzymatic catalysis and is a precursor for metal- catalyzed •OH formation.
H ₂ O ₂ , <u>hydrogen peroxide</u>	Two-electron reduction state, formed by dismutation of $\bullet O_2$ - or by direct reduction of O_2 . Lipid soluble and thus able to diffuse across membranes.
•OH, <u>hydroxyl radical</u>	Three-electron reduction state, formed by <u>Fenton reaction</u> and decomposition of <u>peroxynitrite</u> . Extremely reactive, will attack most cellular components
ROOH, <u>organic hydroperoxide</u>	Formed by radical reactions with cellular components such as <u>lipids</u> and <u>nucleobases</u>
RO•, alkoxy and ROO•, peroxy radicals	Oxygen centred organic radicals. Lipid forms participate in <u>lipid peroxidation</u> reactions. Produced in the presence of oxygen by radical addition to double bonds or hydrogen abstraction.
HOCI, <u>hypochlorous acid</u>	Formed from H ₂ O ₂ by <u>myeloperoxidase</u> . Lipid soluble and highly reactive. Will readily oxidize protein constituents, including <u>thiol groups</u> , <u>amino groups</u> and <u>methionine</u>
ONOO-, <u>peroxynitrite</u>	Formed in a rapid reaction between $\bullet O_2$ - and NO \bullet . Lipid soluble and the reactivity to hypochlorous acid. Protonation forms peroxynitrous acid, and the can undergo homolytic cleavage to form hydroxyl radical and <u>nitrogenetic rade</u> .

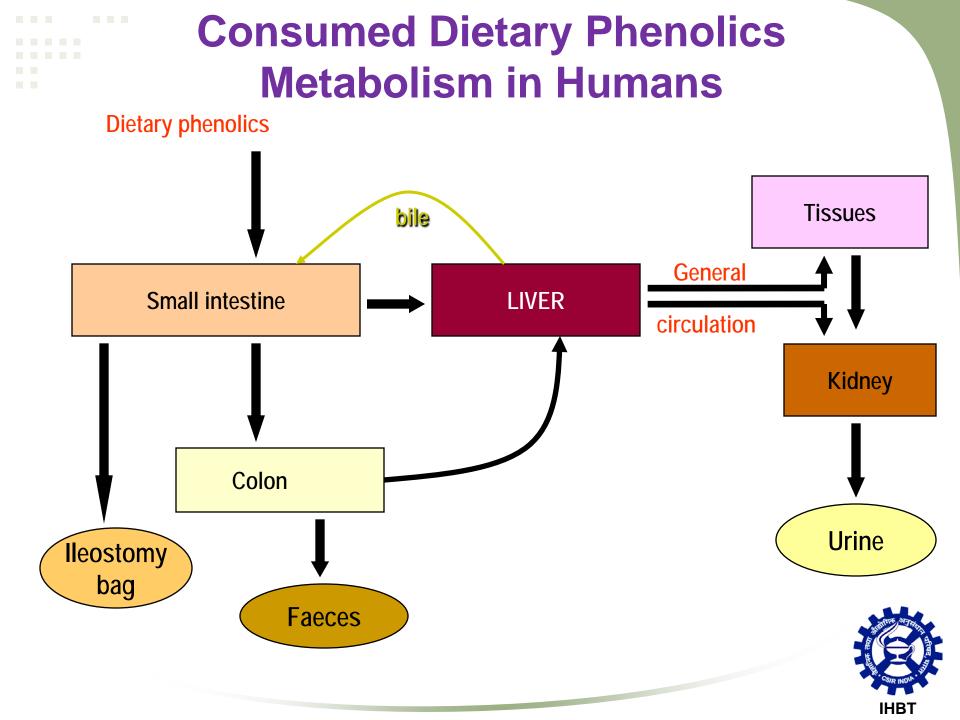

PHENOLICS as **ANTIOXIDANT**

Phenolic antioxidant mechanism


Two-Stage Oxidation of Quercetin

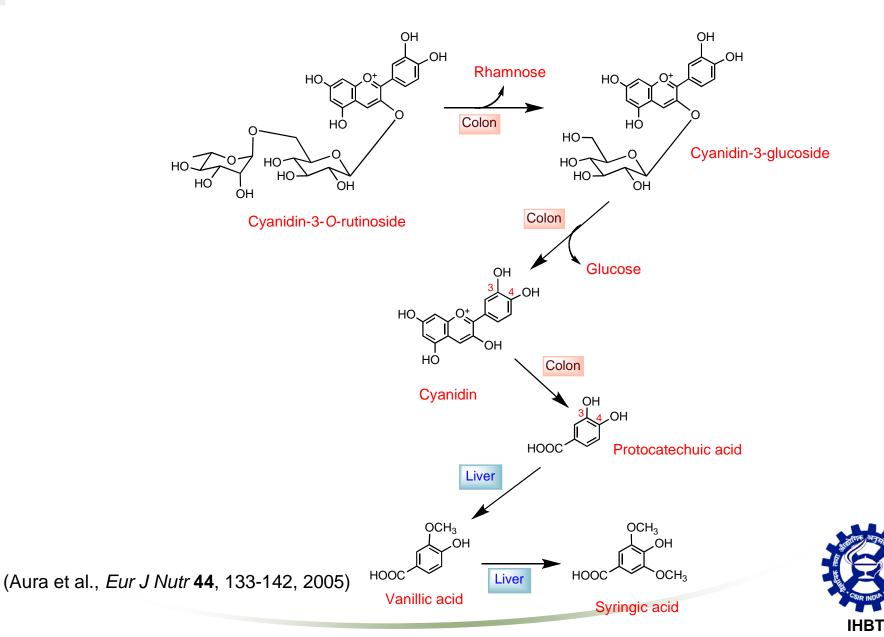
(J. Agric. Food Chem. 2003;51:1684-90)

Structure – activity relationships


.

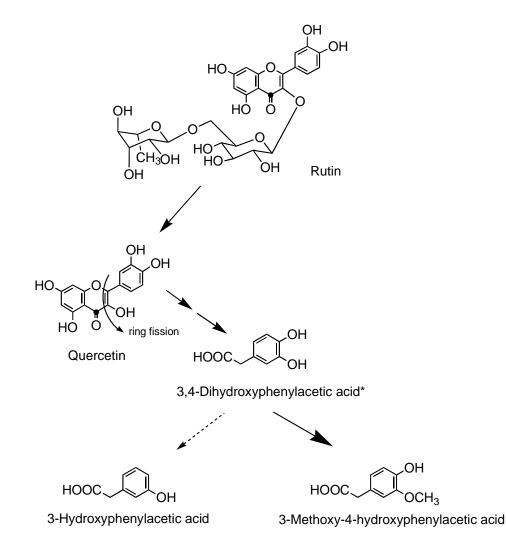
ANTIOXIDANT MEASURE

Item	Antioxidant Capacity (μ mol Trolox/g DM)
Black Tea	927
Green Tea	814 30
Spinach	129 6
Beet	81 25
Leaf Letuce	49 7
Cauliflower	46 11
Garlic	46
Onion	40 2
Cabbage	32 2
Carrot	26 8
Corn	22 4
Potato	15 5
Cucumber	15 2
Sweet potato	14 2


IHBT

J. Agric. Food Chem. 1996, 44, 3426-3431

.


Colonic degradation of anthocyanins

.

Fate of Rutin In The Large Intestine

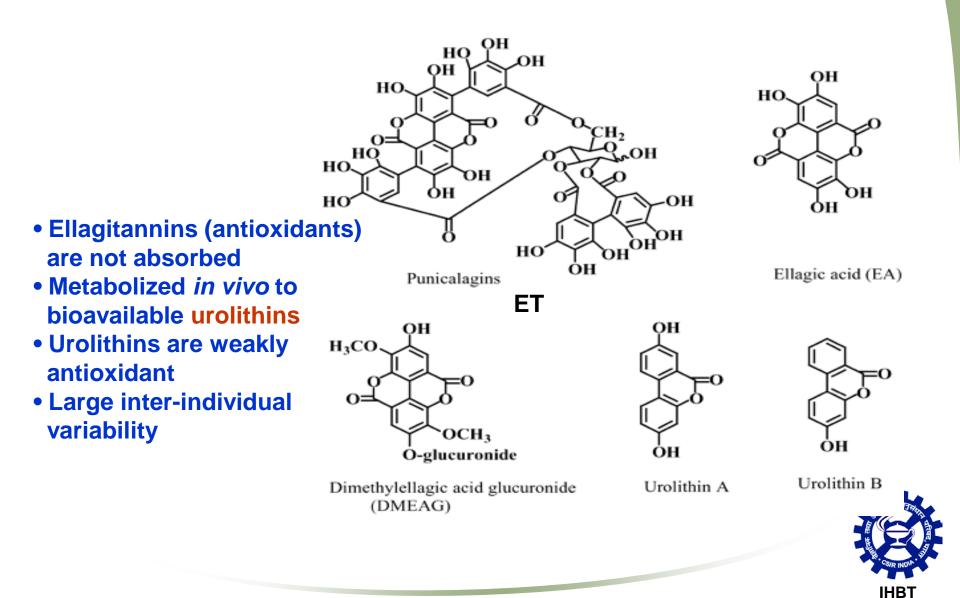
BIOAVAILABILITY

1. The maximum plasma concentrations attained after a polyphenol-rich meal, which are in the range of 0.1–10 μ mol/L.

2. Catabolism of polyphenols in humans usually occurs only as a result of microbial activity in the (large) intestine.

3. Human tissues are exposed to polyphenols via the blood, which is the only route through which dietary polyphenols can reach tissues and their cells, except for the cells lining the intestinal tract.

4. Phenolic acids account for about one third of the total intake and flavonoids account for the remaining two thirds. The most abundant flavonoids in the diet are flavanols (catechins plus proanthocyanidins), anthocyanins and their oxidation products. The main polyphenol dietary sources are fruit and beverages (fruit juice, wine, tea, coffee, chocolate and beer) and, to a lesser extent vegetables, dry legumes and cereals.


5. Endogenous plasma antioxidants, especially ascorbate, are required for disposal of the resultant phenoxyl radicals .

6. Over 95% of the intake passes to the colon and is fermented by the gut microflora. A fraction of the resulting microbial metabolites is absorbed and appears in the plasma primarily as mammalian conjugates.

7. More than 2 d are needed for the phytoestrogen metabolites to reach the baseline concentrations in plasma and urine after the consumption of soy milk and flaxseed, respectively.

METABOLISM IN GI

TISSUE DISTRIBUTION

Non-detected-in

 –Liver**, kydney**, muscle, adipose, heart, lung, brain.

Plasma concentrations

• -Below 1µM

Thank You!

Institute of Himalayan Bioresource Technology, Palampur (H.P.) India (Council of Scientific & Industrial Research)

Post Box No. – 06 Palampur-176061 (H.P.) India Website: http://www.ihbt.res.in E-mail: director@ihbt.res.in EPABX: 91-233338-39,230742-43,230431 Fax: 91-1894-230433 / 230428