Millets: Processing and Utilization

Presented

by

Professor Suresh Prasad Indian Institute of Technology Patna

Millets?

Origin Africa and Asia Group of annual grasses arid and semiarid regions Small seeded grains (cereals) Genera/species Penissetum, Eleusine, Setaria, Panicum and

Paspalum

Africa, Asia, China and Russia Federation

Origins and common names of minor millets

Table 1: Origins and common names of millets

	Common names	Likely origin	
Sorghum bicolor	Sorghum, great millet, guinea corn, kafir corn, aura, mtama, jowar, cholam. kaoliang, milo, milo-maize	Northeast quadrant of Africa (Ethiopia-Sudan border)	
Pennisetum glaucum	Pearl millet, cumbu, spiked millet, bajra, bulrush millet, candle millet, dark millet	Tropical West Africa	
Setaria italica	Foxtail millet, Italian millet, German millet, Hungarian millet, Siberian millet	Eastern Asia (China)	
Panicum sumatrense	Little millet	Southeast Asia	
Paspalum scrobiculatum	Kodo millet	India	
Panicum miliaceum	Proso millet, common millet, hog millet, broom-corn millet, Russian millet, brown corn	Central and eastern Asia	
Echinochloa crus-galli	Barnyard millet, sawa millet, Japanese barnyard millet	Japan	
Eleusine coracana	Finger millet, African millet, koracan, ragi, wimbi, bulo,	Uganda or neighboring	

The millets include species in several genera. The most widely cultivated species in order of worldwide production are:

Major Millets

Pearl millet (*Pennisetum glaucum*)
Foxtail millet (*Setaria italica*)
Proso millet also known as common millet, broom corn millet, hog millet or white millet (*Panicum miliaceum*)
Finger millet (*Eleusine coracana*)

Minor millets

Barnyard millet (Echinochloa spp.) Kodo millet (Paspalum scrobiculatum) Little millet (Panicum sumatrense) Guinea millet (Brachiaria deflexa = Urochloa deflexa) Browntop millet (Urochloa ramosa = Brachiaria ramosa = Panicum ramosum)

Millet has a tiny, pale, yellow seed with a nutty flavour which lends itself well to being cooked and eaten whole.

DIFFERENT NAMES OF MINOR MILLETS IN INDIAN LANGUAGES

Common Name	Foxtail millet	Little millet	Kodo millet	Common millet	Barnyard millet	Finger millet
Scientific	Setaria italica	Panicum	Paspalum	Panicum	Echinochloa	Eleusine
name		miliare	scrobiculatum	miliaceum	frumantacea	Coracana
Bengali	Syama dhan	Kangni	Kodoadhan	••	Shamula	Madua
Gujarati	Ral kang	Gadro	Kodra	Vari	Sama	Bhav
Hindi	Kangni	Kutki	Kodra	••	Shama	Madua
Kannada	Priyangu thene	Samai	Haraka	Baragu	Samai	Ragi
Kashmiri	Shol	Ganuhaar	·-	Pingu	••	••
Malayala	Thina	Chama	Varagu	Panivaragu	••	Moothari
m						
Marathi	Rala	Sava	Harik	Vari	Shamul	Nachni
Oriya	••	Suan	Kodus	China		Mandia
Punjabi	Kangni	••	••	••	••	
Tamil	Thenai	Samai	Vargu	Panivaragu	Kudirai valu	Kezhvaragu
Telugu	Korralu		Arikalu	Varagalu	Bonta chamalu	Ragulu
Other	Foxtail millet,	Goudli,	Pakodi,	French millet	Sawank,	Finger millet,
names	Moha millet,	Gondola	Manakodra		shyama	Korakan, rajika
	Kakan kora,					
	Chinka					

Major Potential of Minor Millets

Country	Area (ha)	Yield (Hg/ha)	Production (MT)
India	11,000,000	8,812	9,000,000
Nigeria	N/A	N/A	7,964,000
Niger	N/A	N/A	2,500,000
China	1,070,420	18,225	1,950,800
Burkina Faso	1,500,000	7,158	1,214,419
Russian Federation	500,000	19,500	975,000
Mali	1,245,480	6,544	815,000
Sudan	2,440,000	2,541	620,000
Uganda	390,000	14,974	584,000
Senegal	820.000	5,488	450,000
Chad	706,935	6,083	430,000
Source: EAO (2003) Millet*	Viald for millet types has	is been lumined together: Cou	marrien te ka/ha:

Source: FAO (2003) Millet*- Yield for millet types have been lumped together; Conversion to kg/ha;

World Production of Millets*: Area Harvested (Ha) 1998-2003 Millet Year 1998 1999 Area Harv (Ha) 200020012002 200311,942,400 India 12,550,000 13,012,200 9,000,000 11,000,000 12,527,200 2,393,580 2,087,000 2,440,000 Sudan 2,762,000 2,586,000 2,437,000 1,283,701 1,138,581 1.389.618 1.500.000 1,243,853 1.322.953 Burkina Faso 1.078,624 910.816 932,307 1.245.480 1.245.480 1,442,388 Mali 1.329.353 1,140,398 China 1.411.406 1.250.296 1,148,609 1.070.420 819,498 766.495 1,007,462 842.124 801.074 820,000 Senegal 785,709 785.630 791,753 706.935 Chad 848.859 706.935 987,600 Russian Federation 530,500 1,370,400 697,700 341,900 500,000 376,000 401.000 384,000 389,000 390,000 390,000 Uganda

Millet growing area

Foxtail millet

Little millet

Kodo millet

Proso millet

Japanese barnyard millet

Finger millet

Millet is very easy to digest; it contains a high amount of lecithin and is excellent for strengthening the nervous system. Millets are rich in B vitamins, especially niacin, B6 and folic acid, as well as the minerals calcium, iron, potassium, magnesium and zinc. Relished for its nutritional value, being a rich source of carbohydrates and minerals, such as calcium, phosphorous and iron.

Millets contain no gluten, so they are not suitable for raised bread, but they are good for people who are gluten-intolerant.

Nutrient composition of sorghum, finger millet andother cereals (per 100 g edible portion; 12 % moisture)

	Prote	Fa	Ash	Crude	Carboh	Energ	Ca	Fe	Thiami	Riboflav	Niacin
Food	ir	t	(g)	• fibre	У	У	(mg	(mg	n (mg)	in (mg)	(mg)
	''(g)	(g)		(g)	drate(g)	(kcal)))			
Rice (brown)	7.90	2.7	1.3	1.0	76.0	362	33	1.8	0.41	0.04	4.3
Wheat	11 .6	2.0	1.6	2.0	71.0	348	30	3.5	0.41	0.10	5.1
Maize	9.20	4.6	1.2	2.8	73.0	358	26	2.7	0.38	0.20	3.6
Sorghum	10.4	3.1	1.6	2.0	70.7	329	25	5.4	0.38	0.15	4.3
Pearl millet	11 .8	4.8	2.2	2.3	67.0	363	42	11 .0	0.38	0.21	2.8
Finger millet	7.70	1.5	2.6	3.6	72.6	336	350	3.9	0.42	0.19	1.1
Foxtail millet	11 .2	4.0	3.3	6.7	63.2	351	31	2.8	0.59	0.11	3.2
Common millet	12.5	3. 5	3. 1	5.2	63.8	364	8	2.9	0.41	0.28	4.5
Little millet	9.70	5.2	5.4	7.6	60.9	329	17	9.3	0.30	0.09	3.2
Barnyard millet	11 .0	3.9	4.5	13.6	55.0	300	22	18.6	0.33	0.10	4.2

Source : Hulse et al. (1980); USNRC I NAS (1982). USDA/HNIS (1984).

Nutrient composition of Millets and Cereals: (per 100g.)

Food grain	Protein	CHO	Fat	Crude fibre	Ca (mg)	P (mg)	Fe (mg)
	(g)	(g)	(g)	(g)			
Kodo millet	8.3	62.0	1.3	9.0	27.0	188	12.5
Proso millet	12.5	70.0	3.1	7.2	14.0	206	12.0
Foxtail millet	5.0	60.9	12.3	4.3	15.0	209	31.0
Little millet	7.7	67.0	4.7	7.6	17.0	222	6.0
Barnyard	15.0	65.5	6.2	2.2	4.4	280	11.0
millet							
Wheat	11.8	71.2	1.5	1.2	41.0	306	5.3
Rice	6.8	78.2	0.5	0.2	45.0	160	-

Less popularity....?

Lack of technical know-how @ processing methods

Associated cultural issues in adoption and diversification of food

Lack of awareness @ nutritive value with a opinion that the small millets are poor men crop

Reluctance among consumers to buy and utilize

Why Grains, Whole Grains and Pearling...?

- Learned grains are good for us because of their calorie and energy contributions
- **Discovered grains are a good source of fiber**
- Focused on grains as a good source of phytochemicals

Traditional dehulling

In manual pounding

The grain is moistened +10% water to facilitates the removal of fibrous bran and separation of the germ and the endosperm, if desired produces a slightly moist flour, leads to reduce its shelf-life *(Perten, 1983)*

Parboiling is reported to help in dehusking kodo millet and to eliminate the stickiness in cooked finger millet porridge. The resulting product is dried, dehusked and decorticated.

(Shrestha, 1972 and Desikachar, 1975)

Key raw material characters for any grain processing quality are size, form and structure of the seed, including its development on its outer (bran) layer and the endosperm hardness.

Due to the small grain size of minor millet, pearling and milling are often more complex.

Decortication reduced total protein and lysine by about 9 and 21 percent, respectively, but that it also improved the utilization of the remaining protein

Pushpamma (1990)

Phytate content of millet varieties ranged from 170 – 470 mg/100g of whole grain, and dehulling resulted in a 27-53 percent reduction in phytate content

Lorenz (1983)

On dehulling, phytin phosperous decreased 12% in common millet, 39% in little millet, 25% in kodo millet and 23% in barnyard millet

Sankara Rao et al., 1983

Classification of Gluten flours

HIGH

Hard wheat Durum Gluten

Kamut Spelt Triticale LOW

Barley Oats Rye

Amaranth **Buckwheat** Chickpea Cornmeal Millet Quinoa Rice Teff

NIL

Gluten high-protein element in flour that allows bread to rise

Gladins that make the dough stick together and causes digestive distress

Glutenins that make the dough elastic

High gluten flours make high, light loaves of bread

Low or non-gluten flour is fortified to vary the taste or texture of bread

Utilization of Minor Millets in India

Raw material form

Millet / Products Nature of Products

FINGER MILLET

Sangati	Stiff porridge	Rice brokers and flour		
Roti	Unleavened bread	Flour		
Ambali	Thin porridge	Flour		
PROSO MILLET				
Annam	Rice-like	Dehulled grain		
Muruku	Deep fried	Flour		
Karappoosa	Deep fried	Flour		
Ariselu	Deep fried	Flour		
FOXTAIL MILLET				
Annam	Rice-like	Dehulled grain		
Ariselu	Deep fried	Flour		
Sangati	Stiff porridge	Flour		
Roti	Unleavened bread	Flour		
KODO MILLET				
Annam	Rice-like	Dehulled grain		

(Source: Pushpumma and Chittemma Rao, 1981)

Process for Stiff porridge from millets

Process flow for value addition of kodo millets

Need for minor millet processing

Digestibility

process to produce dried grains edible and digestible.

Food safety

cooking inactivates natural toxins, such as trypsin inhibitors and also prevents bacterial growth and food spoilage

Organoleptic properties

process to optimise the appearance, taste and texture of foods to meet the needs of consumers

Convenience

ready-to-eat food products meet consumer demand for quick and easy meal solutions

Maximizing their nutritional value

process to make it easier for nutrients from grains to be digested. Nutrients lacking in the diet can be added to staple grain-based foods (e.g. thiamin added to flour)

Profitability

develop good profitable uses for millets

Need to Establish processing facilities

particularly important for vital to the future of local cereal farming (In dry regions) Meeting demand for pre-processed and convenience foods increasing urbanization and rising disposable

incomes, through diversified products

Health Benefits Of Eating Millet

- Lignans, an essential phytonutrient present in millet, are very beneficial to the human body. Under the action of interstitial friendly flora, they are converted to mammalian lignans, which act against different types of hormonedependent cancers, like breast cancer and also help reduce the risk of heart disease.
- Regular consumption of millet is very beneficial for postmenopausal women suffering from signs of cardiovascular disease, like high blood pressure and high cholesterol levels.
- Children's intake of whole grains like millet and fish has been shown to reduce the occurrence of wheezing and asthma.

- A high source of fiber, millet is very beneficial against breast cancer in post-menopausal women.
- According to research and recent studies, consumption of millet can help women combat the occurrence of gallstones, as they are a very high source of insoluble fiber.
- This form of cereal grain is very high in phosphorus content, which plays a vital role in maintaining the cell structure of the human body. The key role of this mineral is that it helps in the formation of the mineral matrix of the bone and is also an essential component of ATP (adenosine tri-phosphate), which is the energy currency of the body.
- A single cup of millet provides around 24.0% of the body's daily phosphorus requirement. This mineral is a very important constituent of nucleic acids, which are the building blocks of genetic code.

- Recent research has indicated that the regular consumption of millet is associated with reduced risk of type 2 diabetes mellitus. This is mainly due to the fact that whole grains like millet are a rich source of magnesium, which acts as a co-factor in a number of enzymatic reactions in the body, regulating the secretion of glucose and insulin.
- Magnesium is also beneficial in reducing the frequency of migraine attacks. It is even very useful for people who are suffering from atherosclerosis and diabetic heart disease.
- To get the health benefits of millet, serve it warm with milk as an alternative to hot oatmeal in the morning. Its nutty taste can be enhanced by gently roasting the grains in a pan on the stovetop. It can also be popped like popcorn to create a healthy "puffed" cereal. It can be ground into gluten-free flour and added to baked goods. One can also use it in soups, casseroles, and as a side-dish in place of rice. Enjoy the many health benefits millet has to offer!

THANK YOU